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Understanding Long-Term Diffusion
Dynamics in the Prevalence of Adolescent

Sexual Initiation: A First Investigation Using
Agent-Based Modeling

Mark G. Orr and Clare Rosenfeld Evans
Columbia University

Time-trends in the prevalence of adolescent sexual initiation exhibit periods of
increase, decrease and equilibrium. We attempted to explain, in mechanistic terms,
how such dynamics arise by developing an Agent-Based Model. The model assumes
that sexual initiation diffuses socially both within and across cohorts. The model
behavior matched, qualitatively, the empirical time-trends. The impact of two inter-
vention strategies suggested that the age at which an intervention is implemented
effected system behavior as did the choice of which specific subpopulation was tar-
geted. Suggestions for how computational models might be used to explore research
questions in developmental science were discussed.

Social diffusion—the idea that behaviors, attitudes, beliefs, information, and
innovations can spread socially—is a fundamental explanatory mechanism that
is foundational to several of the social and behavioral sciences (e.g., diffu-
sion of innovations [Rogers, 2003]), social psychology (e.g., social cognitive
theory [Bandura, 1997]), sociology (e.g., social network theory, [Newman,
2010]) and social epidemiology (e.g., theory of fundamental causes of dis-
ease, [Link, 2008]). Furthermore, social diffusion is well supported empirically
(see Smith & Christakis, 2008, for a review); for example, it has been impli-
cated in smoking cessation (Christakis & Fowler, 2008), emotions (Hill, Rand,
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INTERCOHORT DIFFUSION DYNAMICS 49

Nowak, & Christakis, 2010a), mental health (Ueno, 2005), drug use (Galea, Hall,
& Kaplan, 2009), suicidal ideation (Bearman & Moody, 2004), and altruistic
cooperation (Fowler & Christakis, 2010). In practice, public health interven-
tions that capitalize on diffusion principles have demonstrated success (Valente,
2010).

Progress has been made toward understanding several important aspects of
social diffusion, including the probability of an individual being influenced by
each of his or her social contacts (Hill, et al., 2010a; Hill, Rand, Nowak, &
Christakis, 2010b), the introduction of individual-level thresholds as the basis for
diffusion dynamics (Granovetter, 1978), how the rate of social diffusion is depen-
dent on network structures and patterns of thresholds (Newman, 2010; Valente,
1995; Watts, 2002), the diffusion dynamics between dyadic relations (Shoda,
LeeTiernan, & Mischel, 2002), and the potential influence of social diffusion on
population-level distributions of personality traits (Read et al., 2010). The bulk of
this work has addressed static populations, where the members of the population
under study do not change. Therefore, little has been revealed thus far about dif-
fusion mechanisms across larger time scales whereby populations are separated
in time.

Larger time scales (e.g., 10, 20, 40 years) are important to consider because
the trends in prevalence of several key behaviors (smoking, obesity, consumer
behavior, sexual behavior, public opinion) are suggestive of a diffusion process
that occurs between populations separated in time (what we call intercohort diffu-
sion). For example, the prevalence of adult cigarette smoking in the United States
dropped every time it was measured from 1965 to 2007 (Centers for Disease
Control and Prevention, 2010). This trend is not suggestive of a random change
in smoking behavior across cohorts, but of some systematic influence on smok-
ing behavior. That is to say, each successive cohort was pushed to smoke less
than previous cohorts. Given that social diffusion is well recognized within sin-
gle cohorts and that birth cohorts have some overlap (i.e., exist simultaneously),
we hypothesize that intercohort diffusion may be one of the driving forces that
creates systematic change versus random fluctuations across cohorts.

In this article, we approach this difficult problem by conceptualizing it as a
very simplified system. Our approach, although a gross oversimplification of the
problem, will afford the initial traction needed to generate potential insights into
the phenomenon of interest. Figure 1 represents an age-graded two-cohort system,
where Bin A contains a cohort that is younger than the cohort contained in Bin B.
The mechanics of the system are as follows. A cohort enters the system in Bin A,
ages for a fixed time period, and then migrates to Bin B where it ages for another
fixed time period before finally exiting the system. When a cohort migrates to
Bin B, another younger cohort enters into Bin A. Within each bin the social
diffusion process is mostly governed by interactions within the bin. However,
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50 ORR AND EVANS

FIGURE 1 Conceptual schematic of intercohort diffusion of behavior model (IDBM) dif-
fusion processes. This conceptual schematic of diffusion processes in the IDBM depicts three
critical aspects of the model. First, the portion of the population under study at a given point in
time is segmented into the older and younger cohorts. Second, diffusion largely occurs between
individuals in the same cohort who are local neighbors. Third, diffusion also occurs from the
older cohort to select individuals in the younger cohort who are linked to the older popula-
tion of agents. The younger cohort is assumed not to have any influence on the behavior of
the older cohort. Each cohort of agents enters Bin A and spends four time ticks (nonspecified
units of time) there before progressing to Bin B where the cohort remains for another four time
ticks before exiting the system. As the first cohort move from Bin A to Bin B, the subsequent
cohort enters Bin A and follows the same process. Each cohort is only active in the system
for a total of 8 ticks (4 in Bin A and 4 in Bin B) and cohorts proceed through the system
sequentially.

some members in Bin A are influenced by the members in Bin B (this is the
intercohort diffusion process). The measure of interest in this case would be the
prevalence of the behavior in Bin B, measured once for each cohort. This provides
a time series, cross-sectionally by cohort, of the prevalence of the behavior in the
system.

Dynamics of Sexual Initiation Behavior in Adolescents

Our interest in intercohort diffusion stems from the long-term time trends of
adolescent sexual initiation prevalence in the United States from about 1950 to
the present (sexual initiation refers to the first time a person engages in coitus).
These data show three empirical regularities: (1) periods of monotonic (unidirec-
tional) increases or decreases in prevalence; (2) change points, or points in time
at which the prevalence time trend shifts direction; and (3) periods of equilibria in
which the prevalence is static, not increasing or decreasing. For example, among
18-year-old women in the United States, prevalence rose monotonically from 26%
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INTERCOHORT DIFFUSION DYNAMICS 51

to 54% during the period between the late 1950s and approximately 2000 (Finer,
2007). Data from U.S. high school students showed a monotonic decrease in sex-
ual experience during the 1990s and early 2000s that has more recently reached
a phase of little change in prevalence over time (Santelli, Orr, Lindberg, & Diaz,
2009).

These time trends have been collected mainly for the adolescent sexual and
reproductive health community in an effort to understand past trends and to
possibly prepare for future health needs in contraception, health education, and
reproductive services. The focus of this literature, however, has not been toward
developing theoretical or mechanistic explanations of these time trends (see Singh
& Darroch, 1999, pp. 218–219 for a prototypical example of how mechanisms are
not considered). The purpose of this article is to begin investigating the options
for a mechanistic, theoretical account of the long-term trends in sexual initiation
in the United States. This will not only increase our scientific understanding of
the etiology of the trends, but may also allow for better preparation for future
reproductive health needs.

To this end, we developed the intercohort diffusion of behaviors model (IDBM)
to explore whether long-term dynamics could arise in a system that is constrained
to include only those structures and mechanisms presented in Figure 1. We chose
to focus on social diffusion because of its ubiquity across health-related behav-
iors and its specific role in sexual initiation in adolescents (Rodgers, Rowe, &
Buster, 1998; Romer & Stanton, 2003). Our work is not intended to discount the
importance of exogenous influences such as technological advancements in con-
traceptives (Coontz, 1992) or the influence of the mass media (Brown, 2002). In
contrast, we intend to provide a proof of concept that long-term dynamics may
arise without such exogenous influences.

COMPLEX SYSTEMS AND AGENT-BASED MODELING

Complex systems research “challenges the notion that by perfectly understanding
the behavior of each component part of a system we will then understand the
system as a whole” (Miller & Page, 2007, p.3). The behavior of complex systems
is described well by a set of characteristic features, of which the most applicable
to the IDBM are sensitivity to initial conditions, bifurcation (dramatic shifts in the
observed behavior of the system), and self-organization. Self-organization refers
to the global, system-level patterns that are driven by a process of interaction
among lower-level elements in the system.

Agent-based modeling (or ABM) is a computational tool that is well suited to
understanding complex systems. In ABM the interactions of individuals—called
agents—are governed strictly by local interaction rules that are not determined
by the global, system-level behavior or by any influence external to the system.
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52 ORR AND EVANS

An alternative methodology to ABM, which is powerful and popular through-
out the social sciences, is differential equation modeling (e.g., it is the backbone
of system dynamics modeling). We employed ABM because key features of
real world structures—including heterogeneity and network structure—would
be best captured through the use of this framework (Rahmandad & Sterman,
2008). Furthermore, we felt that potential forthcoming expansions of the IDBM
may be more amenable to the ABM framework (see Discussion for forthcoming
expansions of the IDBM).

The behavior of the IDBM is expected to accord with what is already known
about complex systems. In particular, we expect to observe global (systems level)
patterns of behavior arising from self-organization (individual-level behavior),
bifurcation (phase shifts), and sensitivity to initial conditions. That is, we expect
to see changes in population-level prevalence that arise out of individual-level
sexual behavior, and that the observed prevalence will depend on what conditions
are assumed to exist at the outset.

METHOD

Overview of the IDBM

Before absorbing details of the IDBM, it will be helpful to have a skeletal
understanding of how cohorts flow into and out of the model and how the dif-
fusion process operates within and between cohorts. We provide the details in
the next section for all aspects of the IDBM. In particular, the terms social con-
text, social influence, and how time is handled will be defined explicitly. It will
be helpful to consult Table 1 (a listing of parameters and their justifications in
the IDBM).

Figure 1 is a schematic of the structure and dynamical flow of the IDBM.
A cohort of agents (representative of a cohort of individual people) enters the
system into Bin A, stays in Bin A for a specified time-period, migrates to Bin B
as a cohort, stays for a specified time-period before exiting the system. When a
cohort migrates to Bin B, Bin A is populated with a new cohort. This population
flow mimics how grades are structured in a school.

This initial model is a deliberate oversimplification. Thus, we did not represent
age, race/ethnicity, or gender as properties of cohorts or individual agents. These
are known factors that show differences in the prevalence of sexual initiation in
adolescents.

In the IDBM each agent can be in one of two states—sexually initiated or
not (this is a one-way state system; once sexually initiated, an agent cannot
switch back to noninitiated). Social diffusion in the IDBM, then, is the spread
of becoming sexually initiated and is governed by the behavior of the individual

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
O
r
r
,
 
M
a
r
k
]
[
N
Y
S
 
P
s
y
c
h
i
a
t
r
i
c
 
I
n
s
t
i
t
u
t
e
]
 
A
t
:
 
1
5
:
4
1
 
2
3
 
F
e
b
r
u
a
r
y
 
2
0
1
1



INTERCOHORT DIFFUSION DYNAMICS 53

TABLE 1
Summary of Parameters and Justifications in the IDBM

Parameters of Model∗

Social Threshold Mean &
Standard Deviation

The use of a normal distribution in threshold models reflects the
empirical findings in the diffusion of innovations literature
(Rogers, 2003). The mean and standard deviation of this
distribution are two separate model parameters. Our selection of
the distribution N(0.40,0.12) was based in part on our sensitivity
analysis during the parameter selection phase (see Figure 3,
row D) where we tested mean values ranging from 0.38 to 0.42.
The selection of sd = 0.12 was arbitrary. It is critical to note that a
threshold model does not specify how a given agent came to have
a particular threshold.

% Linked The values explored in this paper were 12%, 14% and 16%. These
values are derived from the (somewhat limited) empirical
evidence available on typical inter-grade connectedness in
adolescent school environments (Moody, 1999).

Gamma (γ) For those agents in the younger cohort (Bin A) that are linked to the
older cohort (Bin B), γ represents the weight placed on the
influence from the older cohort (See Eq. 2). The range of γ is 0.0
to 1.0 with 0.0 representing no influence (and thus essentially the
agent is unlinked) and 1.0 indicating that only the older
cohort—not neighboring agents in the younger cohort—is
influential.

Sexually Initiated at Model
Initialization

A fixed proportion of each new cohort is assigned the status of
“sexually initiated ” at model initialization in order to trigger
diffusion within the cohort. These “seed” agents are selected at
random. The proportion used in all simulations was 8%. The
choice to use 8% was necessarily arbitrary given that no “real
world” age for the group was defined. The proportion of a
population that would be a realistic seed depends heavily on the
age of that population when observation begins.

Number of Agents per
Cohort

In all simulations we used 650 agents in each cohort. This selection
was arbitrary but allowed for sufficient social connectedness to
observe interesting system behavior.

Area of Physical
Environment

The area of the physical environment impacts the density of the
groupings of agents and thus the social connectedness (i.e. the
average number of neighbors for each agent). By default NetLogo
creates an environment of 33 × 33 equal-sized square spaces and
we did not vary this parameter. The 33 × 33 space was divided
horizontally to create the two 16 × 33 spaced Bins.

(Continued)
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54 ORR AND EVANS

TABLE 1
(Continued)

Summary of
Heterogeneous
Parameters

There are a number of ways individual agents differ from each other:
(1) individual social thresholds (2) number of neighbors (3) status
as sexually initiated or not (4) status as linked to the older cohort
or not.

Model Dynamics

Spatial Distribution &
Network Structure

Physical location of agents is assigned randomly when the cohort is
created. Since physical proximity is used as a proxy for social
connectedness, the random assignment of location creates
heterogeneity in the number of social contacts a given agent
possesses as well as heterogeneity in overall network structure
between cohorts. Our choice to use random spatial distribution as
opposed to the more even spacing of agents in a lattice and the
assignment of social connections through a probability function,
as some other researchers do, was arbitrary.

Run All runs were preset to run for 2,500 ticks. The selection of 2,500
ticks was arbitrary yet we deemed it sufficient to allow a
significant number of cohorts to progress through the artificial
environment. Given that all simulations had a run time of 2,500
ticks there were a total of 625 cohorts visible during this interval.
The last cohort, however, only completes the four ticks in younger
grade so the total is reduced to 624.

∗The term parameter refers to aspects of the IDBM that are under the control of the modeler. They
serve as constants when the model is running, but can be manipulated between runs of the model.

agents. The switch for each agent to the state sexually initiated depends on
its social threshold function—the input for the social threshold function is the
amount of social influence to initiate sexual activity that comes from the agent’s
social context. If at any time the agent’s social influence exceeds the agent’s social
threshold, the agent changes states from not sexually initiated to sexually initiated.
For most agents, social context is defined within the agent’s cohort. For a hand-
ful of agents in Bin A, social context is defined within the agent’s cohort and the
cohort in Bin B (this drives intercohort diffusion).

Specifics of the IDBM

Social context. To capture local effects of agent-to-agent social influence,
each bin was represented by a set of 528 squares arranged on a 16 by 33 Cartesian
coordinate system (see area of physical environment in Table 1). A cohort con-
sisted of 650 agents (see number of agents per cohort in Table 1), each of which
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INTERCOHORT DIFFUSION DYNAMICS 55

was randomly assigned to reside permanently in one square when the agent’s
cohort entered the system (multiple agents could reside on the same square).

The social context for most agents was composed of all agents on adjacent
squares (called a neighborhood) within a bin. This amounted to 8, 5, or 3 squares,
depending on where the agent resided—for example, if the agent was in one of
the corners, it had three adjacent squares. For a small fraction of agents in Bin A,
social context included their neighborhood plus influence from Bin B (this will
be explained under Agent Social Threshold Function). These agents are called
linked agents. Linked status was assigned randomly when agents entered the
cohort. The fraction of linked agents was determined by our sensitivity analysis
(see Parameter Selection and Sensitivity Analysis below).

Dynamics, time, and measurement. Time is represented in the model
by discrete, arbitrary units called ticks. The tick coordinates the social diffu-
sion process. A tick is a signal to all agents in the system to update their state,
synchronously, using the social threshold function (see section Agent Social
Threshold Function below).

A cohort enters the system (into Bin A) and stays there for four ticks. Then, it
migrates to Bin B and stays for four ticks before exiting the system. When a cohort
moves to Bin B another cohort enters Bin A. Thus, except for the first cohort that
enters the system, two cohorts always exist simultaneously in the system for 4
ticks (one cohort in Bin A; the other in Bin B).

A run consisted of putting 624 cohorts through the system in sequence, as
described directly above (see run in Table 1 for explanation). Our primary interest
was to see how the IDBM behaved as a system over time. Thus, we operational-
ized system behavior as the prevalence of sexual initiation for each cohort when
the cohort reaches its 8th tick (i.e., the final tick before exiting the system). Within
a run, the concatenation of this measure across the 624 cohorts is a time series for
which time is really cohort time (equally spaced measurements of the system,
every 4 ticks, in Bin B). For all analyses below we transformed the raw data
from the 624 cohorts into a moving average of prevalence. Each data point is
therefore an average of the prevalence at tick 8 of 11 adjacent cohorts—including
five before and after. By necessity, therefore, the first and last five cohort data
points in a run are dropped, resulting in a total of 614 data points. We refer to
these as cohorts, but keep in mind that the transformed cohorts each represent the
average of 11 cohorts.

Bifurcation was defined as system behavior within a run such that the preva-
lence surpassed 0.32. Bifurcation was defined relative to the performance of the
model within the parameters selected, and this value (of 0.32) was equivalent to
+6 standard deviations from the moving average under conditions of no interco-
hort diffusion (results not presented). This was selected because of our interest
in identifying extreme changes in system behavior. Using this definition, we
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56 ORR AND EVANS

computed two measurements for each run. First, mean proportion cohorts bifur-
cated represented the proportion of the 614 cohorts that reached bifurcation. This
gives a sense of the overall amount of bifurcation in the system for any given run.
Second, survival time represented the time (in cohort time) to the first bifurcation
from the start of a run. This was either the time to bifurcation or, in the event of
no bifurcation, was equal to 614. In effect, when a run did not bifurcate, it was
right censored. This allowed us to use the standard tools of survival analysis to
understand how this system operates with respect to bifurcation.

Agent social threshold function. Each agent could be in one of two states:
sexually initiated or not. The state of an agent can change in one direction only,
from not sexually initiated to initiated.

The social threshold function was: Change state if I ≥ T, where I is the amount
of social influence in the agent’s social context (defined below) and T is the
agent’s social threshold. Social threshold (T) was assigned to each agent in a
cohort when the cohort entered the system, was drawn at random from a nor-
mal distribution N(0.40, 0.12), bounded by (0,1), and never changed (see social
threshold in Table 1).

If the agent was in Bin A, then I was dependent on whether the agent was
linked to Bin B, as described in Equations 1 and 2,

INotLinked = NNeighborsInit

NNeighborsTotal
(1)

ILinked = (1 − γ)
NNeighborsInit

NNeighborsTotal
+ γPBinB (2)

where NNeighborsInit and NNeighborsTotal were the number of neighbors an agent had
that were sexually initiated and the total number of neighbors, respectively. PBin B

represents the prevalence of sexual initiation in the cohort residing in Bin B and
gamma (γ) signifies the strength of the influence from the Bin B cohort on the Bin
A linked agents (γ ranged from 0.0 to 1.0) (see gamma in Table 1). As is evident
from Equation 2, as γ increases the influence of the Bin B cohort increases relative
to the influence of the agent’s neighborhood. If the agent is in Bin B, then I was
defined as in Equation 1.

Typical Behavior of the IDBM

Figure 2 presents the typical behavior of the IDBM. Each panel represents the
system behavior of a single run. The parameters were fixed at identical values for

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
O
r
r
,
 
M
a
r
k
]
[
N
Y
S
 
P
s
y
c
h
i
a
t
r
i
c
 
I
n
s
t
i
t
u
t
e
]
 
A
t
:
 
1
5
:
4
1
 
2
3
 
F
e
b
r
u
a
r
y
 
2
0
1
1



INTERCOHORT DIFFUSION DYNAMICS 57

FIGURE 2 General behavior of intercohort diffusion of behavior model (IDBM). Presented
here is a selection of nine IDBM simulations demonstrating the variety in possible system
behaviors. The x-axes measure the simulation duration in cohort time. The y-axes depict the
prevalence of each cohort that was sexually initiated in tick-age 8. The parameter values uti-
lized to generate these figures were linked = 14%, γ = .90. These values were selected due to
the particularly turbulent nature of simulations in this region in order to demonstrate several
key behaviors of the IDBM. In particular the phenomena of bifurcation, or the sudden and sus-
tained elevation in the prevalence of sexual initiation (Fig. 2D, 2E, 2F) and the sudden collapse
of such bifurcated systems back to lower levels of prevalence (Fig. 2G, 2H, 2I).

each panel (parameters are described below). Figure 2 thus illustrates the variety
of behaviors observed in the IDBM absent any parameter variation.

Individual data points in Figure 2 represent raw data (from 624 cohorts); the
solid line is the moving average (614 cohorts). Figures 2A and 2B are simulations
with relatively stable, lower levels of prevalence. The minor fluctuations in
prevalence are due to variations in the social connectivity in each cohort. Figure
2C demonstrates that occasionally, in relatively stable systems, there are sudden,
major spikes in prevalence. Figures 2D and 2E depict bifurcation. Simulations
without intercohort diffusion never exhibit this feature (data not presented).
Bifurcations are not predictable a priori and, as demonstrated in Figure 2F, they
can occur at any point in the simulation, even immediately after the simulation
begins. Once initiated, the diffusion from Bin B to Bin A cohorts bolsters the
prevalence of sexual initiation in younger cohorts, thus sustaining the elevated
levels. As demonstrated in Figures 2G, 2H, and 2I the elevated period is capable
of spontaneous collapse back to lower levels.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
O
r
r
,
 
M
a
r
k
]
[
N
Y
S
 
P
s
y
c
h
i
a
t
r
i
c
 
I
n
s
t
i
t
u
t
e
]
 
A
t
:
 
1
5
:
4
1
 
2
3
 
F
e
b
r
u
a
r
y
 
2
0
1
1



58 ORR AND EVANS

Parameter Selection & Sensitivity Analysis

The IDBM is a theoretical, proof-of-concept model. Its sole purpose is to explore
whether intercohort diffusion would give rise to systematic changes in preva-
lence. For this type of modeling effort, it is not essential to understand the
system behavior across the full parameter space (there are seven parameters, see
Table 1). Instead, the primary goal is to find a region of the parameter space
that exhibits the system behavior in question, if possible, and then to explore
key parameters in that region of the parameter space. This was also essential for
developing and interpreting the simulated artificial interventions (see next sec-
tion) because it provided an understanding of the baseline characteristics of the
system.

We focused our efforts on the two parameters that control the strength of inter-
cohort diffusion, the proportion of the younger cohort (Bin A) linked to the older
(Bin B) and gamma (γ), the strength of the influence of the older cohort on the
younger linked agents (see Equation 2). Thus, we ran a series of experiments
crossing three levels of linked (12%, 14%, and 16%) with six levels of γ (0.0,
0.80, 0.85, 0.90, 0.95, and 1.0). For these experiments, we set the distribution of
the social thresholds at mean 0.40 (SD = .12). Each cell of this 3 × 6 (linked by γ)
design contained 50 experimental runs of 624 complete cohorts. Figure 3, rows
A–C, shows the results for each level of linked. Within each row, the six values
of γ are presented. The left panels show the mean proportion cohorts bifurcated
where each bar represents the means of the 50 runs for proportion of cohorts
bifurcated. The right panels supply Kaplan-Meier survival curves as an estimate
of how the parameters affect time to first bifurcation. Each line represents the
curve for the respective 50 runs at each level of γ.

It is clear that linked and γ affected the behavior of the system such that
increasing either one increases the amount of bifurcation and decreases the
survival probabilities of the system over time. However, the point of doing the
parameter sweeps was to fix the values of linked and γ to conduct two demon-
strations of the impact on the model of simple artificial interventions. Given the
results above, we fixed linked = 14% and γ = .90. These values seem to provide
a moderate amount of bifurcation and a survival curve that is midway between
complete failure and complete survival.

After fixing the linked and γ parameters we also wanted to explore, in this
parameter region, the effects of changing the mean of the social threshold dis-
tribution. This parameter will play a role in the artificial interventions so it was
essential to test its sensitivity to changes at our given settings for linked and γ.
Figure 3, row D, shows the results for each level of the mean social threshold from
0.38 to 0.42, using the same measures as were used for rows A–C. It was clear
that this system, when fixed at linked = 14% and γ = .90, was highly sensitive to
changes in the mean social threshold. 0.40 was the only value that provided much
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INTERCOHORT DIFFUSION DYNAMICS 59

FIGURE 3 Parameter sweep results. Here we depict results from the parameter selection
and calibration procedure. Rows A–C provide a comparison of the mean proportion cohorts
bifurcated and probability of survival across each of the combinations of gamma (γ) and
linked parameter values. Row D presents the results of a parameter sweep across mean social
threshold values at fixed levels of linked (14%) and γ (0.90).
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variability in the mean proportion of cohorts bifurcated or a survival curve that
was not extreme (either very rapid decline in survival or all surviving). Therefore,
we decided to use 0.40 as our social threshold for the remainder of our work.

Parameters that we did not explore were the number of agents (always fixed
at 650), the proportion sexually initiated at model initialization (8%), the area
of the physical environment, and the standard deviation of the social threshold
distribution (0.12) (see Table 1 for discussion of each parameter).

Demonstrations of Artificial Interventions

The results presented below address two demonstrations where simple, artificial
interventions targeted the social thresholds of the agents. The basic idea was to
test whether system behavior (bifurcation) could be modified by manipulating
the social thresholds. More specifically, we tested whether increasing the social
thresholds of select agents (i.e., making agents less likely to initiate sexual behav-
ior) would decrease the amount of bifurcation and the time to first bifurcation. It
is critical to note that these interventions are a tool for testing system responses
and are not intended to bear any great fidelity to real-world interventions.

Artificial Intervention 1. The first artificial intervention addressed the ques-
tion of whether the age at intervention changes the system behavior. In other
words, how early do you have to intervene to effect change in the system? Age in
this case refers not to real-world age but to the stage of maturation (ticks 1–8)
of agents in the system. We employed an intervention capable of shifting the
entire distribution of the thresholds of agents in a cohort at a selected age by
+0.02 (in effect this changed the average social threshold from 0.40 to 0.42). The
increase of 0.02 was selected because, in the parameter selection experiments,
runs with a mean social threshold of 0.42 did not exhibit any bifurcations (see
Figure 3, Row D, mean social threshold = .42). So in effect this artificial inter-
vention tests whether targeting agents at specific ages will have the same impact
on system bifurcation behaviors. Three levels of intervention age were compared:
intervention at tick 2, 4, and 6. Fifty runs of 624 cohorts were conducted for each
intervention age for a total of 150 runs.

Artificial Intervention 2. Our second artificial intervention attempted to
mimic, in principle, public health programs that are designed to target specific
subpopulations. It builds on artificial intervention 1 by adding the constraint that
either high- or low-risk individuals in the specified age groups are targeted. High
risk was defined as agents with a social threshold of more than one standard devia-
tion below the mean social threshold, low risk as more than one standard deviation
above the mean social threshold. Otherwise, this intervention was identical to arti-
ficial intervention 1 with respect to the parameter values and the Intervention Age
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factor. This allows us to assess the joint and independent effects of Intervention
Age and Risk Group on system behavior.

RESULTS

The results for the artificial interventions are presented in the same format as the
parameter calibrations in Figure 3. Each intervention was analyzed separately.

Artificial Intervention 1

The results for artificial intervention 1 are presented in Figure 4. Panel A shows
the mean proportion cohorts bifurcated for each intervention age. There is a clear
increase in bifurcations as age increases. Panel B shows the survival curves by
intervention age. Again, there is a clear effect. When intervening at age 2, the
model does not exhibit any bifurcations. Increasing the intervention age, however,
does begin to affect the survival curves. To test this formally, we used a Cox
proportional hazards model incorporating intervention age as the predictor. The
equation for this model asserts that the hazard rate for the ith run in the data is

h(t|xi) = h0(t)e(xiβx) (3)

FIGURE 4 This figure presents results from the Artificial Intervention 1. Fig. 4A compares
the mean proportion cohorts bifurcated for each intervention age targeted (2, 4, and 6). For
each Intervention Age, 50 simulations were run. Fig. 4B compares the survival time to first
bifurcation for each intervention age.
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where xi is the categorical levels of intervention age and the βx is the coefficient
estimated from the data. In these data, each data point is one run of 614 cohorts
(the moving average was used, not raw prevalence); 50 runs per intervention age
(3 levels Intervention Age × 50 runs = 150 runs). Furthermore, runs that never
bifurcated were right censored and given a survival time of 614 (in cohort time).
The results are given in exponentiated coefficients to represent the difference in
the proportional hazard between levels of intervention age (age 2 was the ref-
erence category). Runs of Intervention Age 4 were 26.9 times more likely to
bifurcate than Intervention Age 2 (95% CI [3.49, 206.44], p < 0.01); Age 6 was
97.7 times more likely (95% CI [12.94, 735.10, p < 0.0001).

Artificial Intervention 2

The results for artificial intervention 2 are presented in Figure 5. Panels A and B
show the results for the low-risk intervention. It is clear that, when targeting this
subpopulation, there was no effect at any intervention age, either in increases in
the mean proportion cohorts bifurcated or in the survival curves. Panels C and D
show the results for the high-risk intervention. Here, there was a clear effect for
Intervention Age. When intervening at an earlier age, the mean proportion cohorts
bifurcated decreased and the survival curves showed longer times to bifurcation.
Taking Figure 5 as a whole suggests an interaction between Intervention Age and
Risk Group. To test this formally, we compared two separate Cox proportional
hazards models. For Model 1, xi and the associated βx represent the categorical
levels of Intervention Age and Risk Group (age 2 and high risk were the refer-
ence categories). For Model 2, xi and the associated βx represent the categorical
levels of intervention age and risk group (age 2 and high risk were the reference
categories) and the two interaction terms (Intervention Age 4 × Low Risk and
Intervention Age 6 × Low Risk). The general form of the equation is identical to
Equation 3 as were the presentation of the results. The structure of these data was
identical to that for artificial intervention 1. Table 2 presents the results. Model 1
showed a strong effect for both Intervention Age and Risk Group. As intervention
age increased, so did the likelihood of bifurcation. Furthermore, the low-risk runs
were less likely to bifurcate than the high-risk runs. Model 1 is nested in Model 2.
Therefore, we computed an analysis of deviance test to determine whether adding
the Intervention Age × Risk Group interaction added significantly to the model.
The residual deviances of Model 1 and Model 2 were 2475.27 (df = 297) and
2454.32 (df = 295), respectively. The analysis of deviance test was significant
(p < 0.0001, df = 2, 295) indicating the superiority of Model 2. By adding the
interaction term, Intervention Age did not remain predictive of likelihood of bifur-
cation whereas Risk Group did and kept the same relative direction (reducing
the likelihood of bifurcation). However, this result was qualified by a signifi-
cant Intervention Age × Risk Group interaction. Figure 5 illustrates the pattern
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FIGURE 5 This figure presents results from Artificial Intervention 2. Fig. 5A and 5B depict
the mean proportion cohorts bifurcated and the survival time to first bifurcation, respectively,
for interventions targeting low-risk agents. Fig. 5C and 5D depict the same for interventions
targeting high-risk agents. High risk was defined as agents with a social threshold of more
than one standard deviation below the mean social threshold and low risk as agents with social
thresholds more than one standard deviation above the mean social threshold. Within each level
of risk group is a comparison of the impact on system behavior across the three intervention
ages (2, 4, and 6). For each Intervention Age, 50 simulations were run.

found in the coefficients. In conclusion, Intervention Age only had an effect for
the high-risk group.

DISCUSSION

In qualitative terms, the IDBM matched the empirical regularities found in long-
term trends in sexual initiation prevalence in the United States—for example,
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TABLE 2
Cox Proportional Hazard Results for Artifical Intervention 2

exp(coef) 95% C.I. p < x

Model 1
Age 4 1.738 1.254 – 2.411 0.001
Age 6 1.989 1.438 – 2.750 0.0001
Low Risk 0.672 0.521 – 0.867 0.01

Model 2
Age 4 0.978 0.641 – 1.493 NS
Age 6 1.044 0.689 – 1.582 NS
Low Risk 0.246 0.147 – 0.414 0.0001
Age 4 × Low Risk 3.506 1.797 – 6.838 0.001
Age 6 × Low Risk 4.161 2.162 – 8.010 0.0001

systematic increases, decreases, and equilibria (see Figure 2). This is somewhat
surprising given that the IDBM is restricted to social diffusion as its sole mecha-
nism for change. Furthermore, the artificial interventions had a measureable effect
on the behavior of the system in an interpretable way. Intervening at a younger
age clearly reduced bifurcations. However, Artificial Intervention 2 showed that
the efficacy of intervening at a younger age worked only if the high-risk group
was targeted.

At face value, the behavior of the IDBM was severe—bifurcations were sharp,
and the sensitivity to parameter values was high. This is to be expected in a com-
plex system. However, the most important question is, can we infer that these
characteristic behaviors say anything about long-term changes in human sexual
initiation prevalence in the real world? In other words, is human sexual initi-
ation governed by self-organization and characterized by bifurcations? At this
point, provisionally, we can only say that the qualitative behavior of the IDBM
matches, in an abstract way, what we see in the empirical trends in sexual initi-
ation. Next, we recommend modifications to the IDBM that would afford more
justified inferences to the real world.

There are three key omissions in the structure of the IDBM that should be
recognized. First, though a threshold will theoretically incorporate individual-
level characteristics implicitly (Granovetter, 1978), we did not imbue agents with
individual-level characteristics that are known risk factors for sexual initiation
in the IDBM (e.g., personality, age, gender, race/ethnicity, attitudes toward sex,
intentions, and parental monitoring). Second, we did not incorporate exogenous
influences, such as messages in mixed media, or changes in policy and birth
control technologies, into the IDBM. Third, the social network structure in the
IDBM uses random spatial distributions on a fixed Cartesian grid to approxi-
mate true network structures. A related issue is that the network density of the
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IDBM is greater than empirical data from school friendship networks would indi-
cate (Moody, 1999). Future work should incorporate realistic network structure
because it could affect the diffusion dynamics.

Two crucial next steps are (1) to increase the fidelity of the model to the real
world, particularly in the three areas indicated, so as to boost the validity of infer-
ences from the model to the real world, and (2) to collect data that is isomorphic
to the structure of the IDBM (e.g., a single grade in one school). This will bring
the IDBM, and associated inferences to human sexual initiation, more validity.

Figure 2 demonstrates how much change in the system is possible and how it is
very difficult to predict, even when parameter values are held constant. Every slice
of cohort time in Figure 2 is identical with respect to the allowable parameters,
but system-level prevalence changes dramatically. The only difference in time
slices is that the developmental context has changed. This concept, we argue, is
very important for developmental science. Complex systems approaches, such as
the ABM technique illustrated here, are excellent tools for understanding develop-
mental context. The IDBM reveals clearly how outcomes for agents—individually
and in aggregate—are largely dependent on the structure of the immediate social
context and the larger historical context they exist within. The study of individual-
level development can be strengthened through the addition of complex systems
approaches and perspectives.
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