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Abstract
We recently put forth a thesis, the Resolution Thesis, that suggests that cognitive 
science and generative social science are interdependent and should thus be mutu-
ally informative. The thesis invokes a paradigm, the reciprocal constraints paradigm, 
that was designed to leverage the interdependence between the social and cogni-
tive levels of scale for the purpose of building cognitive and social simulations with 
better resolution. We review our thesis here, provide the current research context, 
address a set of issues with the thesis, and provide some parting thoughts to provoke 
discussion. We see this work as an initial step to motivate both social and cognitive 
sciences in a new direction, one that represents unity of purpose, an interdependence 
of theory and methods, and a call for the careful development of new approaches for 
understanding human social systems, broadly construed.

Keywords  Cognitive modeling · Agent-based modeling · Social simulation · Multi-
scale systems

1  Introduction

The degree of overlap between cognitive science and generative social science is 
small despite a shared interest in human behavior and a reliance on computer simula-
tion. The former focuses, largely, on developing computational and formal accounts 
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of human thought, action, performance and behavior with non-trivial incorporation 
of neurophysiological principles when warranted. The latter approaches the ques-
tion of understanding social structure and dynamics using computational and formal 
accounts that implement simple agents (what we call sans cognitive) in social con-
texts. We submit that the dearth of interdisciplinary work between these disciplines 
does not serve either well. Our central thesis, the Resolution Thesis, is this: the cor-
rect resolution of both cognitive and social systems depends on mutual constraints 
between them in the sense that the dynamics and structure of one system should 
inform the theoretical nature of the other. We mean this in the context of theory 
development and related applications in both cognitive science and generative social 
science. The method implied by this thesis is what we call the reciprocal constraints 
paradigm—a bi-directional dependence across levels of scale w.r.t. their respective 
parameter specifications.1

Our thesis implies two claims. First, cognitive models should be able to match 
and predict the real world dynamics of social systems when embedded in social sim-
ulation, and, if not, the cognitive model should be questioned. Second, if an agent-
based simulation is not informed by cognitive first principles, it will fail to general-
ize its account of the dynamics of social system to new situations.

In what follows, we will (1) flesh out the details of the reciprocal constraints para-
digm, (2) review some prior work that is directly relevant to our thesis and puts it in 
context of recent research, (3) address issues and their potential mitigation, and, (4) 
close with some brief, but potentially provocative suggestions. We deliberately exer-
cised a narrow focus using the ACT-R cognitive architecture as our primary vehicle 
of rhetoric, partly because it reflects our expertise, and partly because this archi-
tecture is comparatively well suited for integration of both neural and social con-
straints. Cognitive architectures, as opposed to any cognitive model, have the poten-
tial to capture what agents, in the scheme of generative social science, are supposed 
to do—make adaptive decisions that affect the environment.

2 � The reciprocal constraints paradigm

Figure 1 captures the core components of the reciprocal constraints paradigm: mul-
tiple levels of scale, multiple potentials for model types at each level, and, the con-
straints among levels. To understand the paradigm, it will be useful to imagine a 
potential implementation. Consider a modeling problem in which there is a simple 
social system (e.g., a multi-player repeated economic game). The cognitive model 
is developed, with some consideration for key neural processes, call this CM[1] , and 
without direct comparison to newly generated individual-level data sources (e.g., 
running single-subject experiments in pseudo-game like contexts). CM[1] is then 
implemented in a social network graph that controls information flow (e.g., know-
ing past decisions of other players) and, given some other parameterizations, a 

1  Because cognitive systems are sometimes tightly yoked to neurophysiology, we consider three levels as 
central to our thesis: neurophysiology, cognitive architecture, and social systems
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simulation of the multi-player repeated game is conducted; call this SM[1] . Then, 
SM[1] data is aggregated in some way isomorphic to human data in a similar experi-
mental paradigm and an accuracy/error/confidence metric is computed, call it Con-
straint[1] to map onto Fig.  1. (Notice, at this point, the only direct comparison to 
human data was at the social system level.) Constraint[1] would then be used—in an 
undefined way at this point—to change some aspect of the cognitive model, either 
directly within the cognitive level or, potentially, through the neurophysiological 
level. Let’s imagine that it makes sense to consider neurophysiological processes as 
the next step, a step we call Interpret[1] to map onto Fig. 1. Now, a set of targeted 
neurophysiological measurements are captured by running single-subject experi-
ments in pseudo-game like contexts which yields insight into a potential missing 
abstraction of neurophysiological process in the cognitive model, which we call 
Abstraction[1] . The cognitive model is then refactored to incorporate Abstraction[1] 
and the process is repeated by another simulation using the next generation of the 
cognitive model CM[2] . Note, this example provides only one of an infinite set of 
paths; the paths may be consequential to the final model and could include integra-
tion of human data at one or more points.

A fundamental part of the paradigm is the acknowledgment that scaling up from 
the cognitive level to the social level is different, in principle, compared to the scal-
ing up from the neural to cognitive level. The former transition instantiates mul-
tiple isomorphic and interdependent cognitive models as a simulated system (i.e., 
each model is functionally equivalent). The latter, in contrast, abstracts information 

Fig. 1   The Architecture and Implementation of the Reciprocal Constraints Paradigm. Each row repre-
sents a level of scale (as labeled in the left-most column). Column A is notational for the degree of vari-
ety of potential types of neural processes and cognitive models that could be constructed to capture a 
phenomenon and the types of features in the social space (e.g., peer-network)—i.e., it captures the fea-
ture/model space of a particular implementation. Column B shows the implementation of the reciprocal 
constraints paradigm; each arrow represents a kind of constraint: Abstract—abstraction of neural pro-
cesses to cognitive processes; Simulate—simulating social systems in which humans behavior is defined 
as a cognitive architecture; Constrain—the feedback signal from the accuracy of the social simulation 
w.r.t. to empirical measurements on human systems; and, Interpret—refinement of the selection of neural 
processes that are implicated in the cognitive model. The former two constraints we call upward con-
straints; the latter are called downward constraints. Implementation of the paradigm will require iteration 
between the feature/model space and the simulation of social and cognitive models. There may be poten-
tial for automation of this paradigm once it is well developed
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processing functionalities that are assumed to be interdependent but potentially dif-
ferent in nature (i.e., not functionally equivalent). This is an important difference in 
light of what a constraint actually means.

3 � Illustrative prior work

We do not know of any examples of work that directly implement the Reciprocal 
Constraints Paradigm—a principled use of constraining information between levels 
of scale, e.g., considering both the Simulate and Constrain arrows between the cog-
nitive and social levels of scale in Fig. 1. However, precursors exist. For example, 
from a largely cognitive perspective, there are several relevant threads of work that 
address aspects which are important for the Resolution Thesis, e.g., on multi-agent 
systems (Sun 2006), computational organizational theory (Prietula et  al. 1998), 
computational social psychology (Vallacher et  al. 2017), work practices (Sierhuis 
et  al. 2007) and Anderson’s Relevance Thesis (Anderson 2002). These efforts, in 
the main, attempted to provide both more accurate predictions of social system 
level behavior and explanations of such that were grounded in cognitive first prin-
ciples. Neurophysiological considerations have, as we will illustrate below, followed 
a similar pattern in terms of informing higher levels of scale (cognitive) from the 
lower neurophysiological level of scale. Next, we describe efforts that either inform 
ACT-R from neurophysiology or use implementations of ACT-R as the agent defini-
tions in a social simulation all of which are considering constraints from lower to 
higher levels of scale. Further, we offer a glimpse of how generative social science 
has conceptualized the integration of cognitive first principles into the behavior of 
agents to date.

3.1 � The ACT‑R cognitive architecture

Computational modeling aims to quantitatively capture human cognitive abilities 
in a principled manner. Cognitive architectures are computational instantiations of 
unified theories of cognition that specify the structures, representations and mecha-
nisms of the human mind. Cognitive models of any given task can be developed 
using a cognitive architecture as a principled implementation platform constraining 
performance to the powers and limitations of human cognition. Cognitive models 
are not normative but represent Simons (1991) theory of bounded rationality (Simon 
1991), and can also represent individual differences in knowledge and capacity such 
as working memory. Cognitive models can be used to generate quantitative predic-
tions in any field of human endeavor.

ACT-R is a highly modular cognitive architecture, composed of a number of mod-
ules (e.g., working memory, procedural and declarative memory, perception and action) 
that operate in parallel asynchronously through capacity-limited buffer interfaces. Each 
module in turn consists of a number of independent mechanisms, typically includ-
ing symbolic information processing structures combined with equations that repre-
sent specific phenomena and regularities (e.g., power law of practice and forgetting, 
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reinforcement learning). Most notably, the architecture includes a number of learning 
mechanisms to adapt its processing to the structure of the environment. ACT-R has 
been applied to model human behavior across a wide range of applications (see ACT-R 
web site for over a thousand publications), ranging from basic experimental psychol-
ogy paradigms to language, complex decision making, and rich dynamic task environ-
ments. The combination of powerful computational mechanisms and human capacity 
limitations (e.g., working memory, attention, etc.) provides a principled account of both 
human information processing capabilities as well as cognitive biases and limitations.

3.2 � Neurophysiogical constraints in ACT‑R

The development of ACT-R has been guided and informed, in recent years, by the 
increased understanding of the computational mechanisms of the brain. For example, 
independent modules have been associated to specific brain regions and circuits, and 
this correspondence has been validated multiple times through fMRI experiments. The 
detailed computations of crucial ACT-R components can also be derived from the neu-
ral mechanisms they abstract. For instance, the latency to retrieve declarative informa-
tion from long-term memory can be derived from the dynamics of the integrate-and-
fire neural model (Anderson 2007), and the mechanisms for skill acquisition can be 
derived from reinforcement learning (Anderson 2007) as well as from the simulation 
of the large-scale effects of dopamine release in the fronto-striatal circuits (Stocco et al. 
2010). In fact, the modularity of ACT-R permits to easily abstract and integrate lower-
level neural principles within the architecture. While this approach does not grant the 
full flexibility of large-scale neural simulations, it has been repeatedly shown to be very 
effective in capturing features of human behavior that would otherwise have remained 
unexplained, while at the same time maintaining the computational parsimony of a 
cognitive symbolic architecture. For example, implementing the dynamics of memory 
retrieval permits to capture a variety of decision-making effects and paradoxes, beyond 
those explained by current mathematical models (Gonzalez et al. 2003). The modular-
ity of ACT-R also permits to regulate the degree of fidelity of a module to its biologi-
cal counterpart, without affecting the entire architecture. As an example, Stocco (2018) 
has shown that the competition between the direct and indirect pathways of the basal 
ganglia can be captured by splitting production rules into opposing pairs. This proce-
dure captures the cognitive effects of Parkinsons disease, and provides a way to model 
individual differences in decision-making (Stocco 2018) and cognitive control (Stocco 
et al. 2017) that are due to individual differences in dopamine receptors in the two path-
ways. See Fig. 2.) This is an example of additional mechanisms that can be added to 
ACT-R to incorporate further biological details (i.e., the abstract constraint in Fig. 1).

3.3 � Social simulation with ACT‑R agents

To study the dynamics of simple systems, work using ACT-R has focused on iter-
ated two-player games, including both adversarial games (e.g., paper-rock-scis-
sors, pitcher-batter in baseball) and social dilemmas allowing both cooperation 
and competition dynamics such as Prisoners Dilemma and Chicken Game West 
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and (Lebiere 2001; Lebiere et al. 2003, 2000). Even in such simple systems, we 
have observed the emergence of complex effects such as bifurcations and stochas-
tic resonance (West et  al. 2005). To scale up to more complex yet regular sys-
tems, we have modeled the emergence of group consensus and choice differentia-
tion in networks of a few dozen nodes on tasks such as consensus voting and map 
coloring, respectively, and observed phenomena such as sensitivity to network 
rewiring parameters (Romero and Lebiere 2014). To study complex cognition 
in complex systems, we have designed and implemented an information forag-
ing task called the Geogame that involves cooperative and competitive problem 
solving and have observed effects including sensitivity to network topology and 
tradeoffs between perceptual and memory strategies (Reitter and Lebiere 2012). 
Clearly, this work represents well the simulate constraint in Fig. 1.

Fig. 2   An example (taken from Stocco (2018) with permission) of how neurobiological constraints can 
be incorporated in a cognitive architecture. The two panels illustrate two alternative ways to implement 
a forced choice task with six possible options (A through F) in ACT-R. (Left Panel) A canonical ACT-R 
model, in which each option A...F is associated with a single, corresponding production rule (Pick A 
Pick F). In this model, the expected value of the different options is encoded as the expected utility of 
each production rule. The utility of each rule is learned through reinforcement learning in ACT-Rs pro-
cedural module, which is associated with the basal ganglia. However, the lack of biological plausibility 
in ACT-Rs procedural module prevents the model from capturing the results of the original study. (Right 
Panel) A biologically-plausible version of the same model, in each of the original production rules is 
split into two opposite actions (Pick A Pick F and Dont Pick A Dont Pick F), whose utilities are learned 
separately. This new version abstracts the competition between the direct and indirect pathways of the 
basal ganglia circuit. When equipped with this biologically-plausible version of production rules, the 
model can successfully reproduce the results in the neuropsychological literature, as well as capture indi-
vidual differences in genetics (Stocco 2018) and even correctly predict new findings (Stocco et al. 2017)
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A common pattern in models of social interaction using ACT-R has been to 
ground agent decisions in previous experiences, whether explicitly in the form of 
memories or implicitly by reinforcement of existing strategies, as mentioned in the 
previous section. We will focus here on two examples using the former approach, 
because it has been both more common and more flexible. Models of adversarial 
interaction usually involve a core capability of detecting patterns in the opponent 
behavior and exploiting them until they disappear. For instance, playing paper rock 
scissors involve exploiting the human limitation in generating purely random behav-
ior (the standard game theory solution) by detecting statistical patterns in move 
sequences. An expectation of an opponents next move can be generated by matching 
his most recent moves against previous sequences using statistical memory mecha-
nisms. Once a pattern is being exploited, the opponent is likely to move away from 
it and in turn exhibit new ones, requiring a cognitive system that constantly unlearns 
previous patterns and learns emerging ones, rather than traditional machine learning 
systems that are training on a fixed set of inputs and then frozen. In that sense, social 
simulation is the ultimate challenge for real-time learning agents: unlike physical 
environments which change relatively slowly and can be mastered in a relatively 
static way, social interactions (especially competitive and adversarial interactions), 
as they involve other cognitive entities, are endlessly evolving and require constant 
learning and adaptivity.

Another example of this approach of decisions from experience in the social 
domain is our model of event generation in the GitHub web repository. The 
instance-based learning modeling methodology (Gonzalez et al. 2003) assumes that 
experience is represented in the form of memories associating a context representa-
tion to the decisions taken in that situation. In our GitHub specific model, the deci-
sions involve generating events related to three cryptocurrency repositories (repos 
for short). The context of each decision is the daily price changes of the three cor-
responding cryptocurrencies: Bitcoin (BTC), Ethereum (ETH) and Monero (XMR). 
The decision itself consists in selecting a specific user, repo, type of event (e.g., pull 
request), and event time.

One notable aspect of this model is that it does not represent an individual deci-
sion maker, as is typical of cognitive models, but instead stands for a community 
of users. A clustering algorithm was used to generate compact communities. Fig-
ure 3 shows some of the social structure inherent to GitHub2. The models memory 
was loaded with the events involving all the users in a given community (typically 
about a thousand). Events are generated through retrievals from memory performed 
in multiple steps (see Fig.  4). At each step, the most active event in memory is 
retrieved. The activation of an event reflects its recency through a process of power 
law decay, and the degree to which it matches the specified context. Initially, the 
context is simply the daily price change of the three cryptocurrencies. The par-
tial matching mechanism decrements the activation of a chunk to the extent that it 
mismatches the context. That will tend to favor events having occurred in similar 

2  We don’t have an approximation of the degree to which our community clustering algorithm mapped 
onto the structure shown in Fig. 3.
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circumstances (i.e., market conditions) in the past. The first retrieval results in a user 
in the community being selected, reflecting the probability of that user generating 
events in the (recent) past. That user is then added to the context before the second 
retrieval to select a repo, likely one that that user has most commonly interacted 
with, although it could also be a repo that a similar user has interacted with. The 
repo is then added to the context to select an event type, largely reflecting the dis-
tribution of events between that user and repo (or similar ones). Finally, the time 

Fig. 3   Bitcoin GitHub Community Graph. Community G7.20. This community is extracted from the 
larger GitHub interaction network (n = 54.1M nodes, m = 134.16M edges). Ties represent any inter-
action from a user to a repo—although this is a bipartite graph, the node attribute (user/repo) is not 
depicted, except for the identification of the BitCoin repo. Clusters were identified in two stages via 
repeated application of the Louvain Community detection routine (Blondel et al. 2008), where we first 
identify large superclusters and then clustered any with more than 50,000 nodes again to identify sub-
clusters. Supercluster 7 is of size n = 269,264, m = 385,315, subcluster 20 has n = 11,292 m = 14,197). 
Layout is based on a Fruchterman–Reingold algorithm, with degree = 1 nodes (green) placed in a circle 
near their respective hub (tan). The Bitcoin Repo is indicated in red and offset slightly to highlight its 
position in the network. (Color figure online)
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of the event is generated by applying the blending mechanism to a fourth retrieval 
to average the distribution of time intervals involving similar events. The process 
results in a model that generates a stream of events that reflects past distributions of 
events while allowing for some generalization to similar events through the memory 
retrieval mechanisms.

3.4 � Comparison to the generative social science approach

Generative social simulation has historically been concerned with the simulation of 
interacting agents according to simple behavioral rules. We can often equate the out-
come behavior of agents to a simple binary action (e.g., you either riot or dont riot) and 
the behavioral rules that produce this outcome to simple mathematical and logical for-
mulations (e.g., if/else statements, threshold values). We are in debt to the many classic 
models that made computational social science the field it is today (Schelling 1969; 
Axelrod et  al. 1995; Epstein 2002). However, there has been some acknowledgment 
that to gain further insight into social systems, we need to decompose behavior into its 
underlying cognitive, emotional, and social (interactions) processes. With this, we are 

Fig. 4   ACT-R memory schematic for simulating GitHub agents. See text for details
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beginning to see a slight shift to developing models with more complex agents (Epstein 
2014).

In this vein, an approach that has gained some traction is the use of conceptual frame-
works that integrate the varied components of agent decision-making processes (Cail-
lou et al. 2017; Sakellariou et al. 2008; Malleson et al. 2012; Pires and Crooks 2017). 
Such frameworks include BDI (Beliefs, Desires, and Intentions) and PECS (Physical 
conditions, Emotional state, Cognitive capabilities, and Social status) (Kennedy 2012). 
In the BDI framework, beliefs are said to be the individuals knowledge about the envi-
ronment, desires contain information about the priorities and payoffs associated with 
the current objective, and intentions represent the chosen course of action Rao et al. 
(1995). BDI agents use a decision tree process which relies on payoff and utility maxi-
mizing functions to select goals and to determine the optimal action sequence for 
which to achieve those goals. The focus on optimality, however, may pose limits on 
its ability to model the boundedly rational agent and has been criticized for being too 
restrictive (Rao et al. 1995). PECS views agents as a psychosomatic unit with cognitive 
capabilities residing in a social environment (Schmidt 2000). The PECS framework is 
flexible due to its ability to model a full spectrum of behaviors, from simple stimulus-
response behaviors to more intricate reflective behaviors, which requires a construction 
of self that necessitates the agent be fully aware of its internal model. By example, Pires 
and Crooks Pires and Crooks (2017) used the PECS framework to guide implementa-
tion of the underlying processes behind the decision to riot, applying theory from social 
psychology to create the agents internal model and to simulate social influence pro-
cesses that heightened certain emotions and drove the agent’s towards certain actions. 
These frameworks, while helpful for guiding implementation, are not to be considered 
substitutes for cognitive architectures such as ACT-R. They can, however, provide a 
meta-framework [sometimes called a macro-architecture) to organize knowledge and 
skill content in respect to a cognitive architecture (e.g., (West et al. 2017)].

Cognitive architectures and meta-frameworks are fundamentally complementary 
(Lebiere and Best 2009). Cognitive architectures precisely specify the basic cognitive 
acts that can be used to compose complex models in a bottom up approach, but pro-
vide few constraints to guide those complex structures. Meta-frameworks provide a top 
down methodology to decompose complex tasks into simpler ones and structure the 
knowledge required, but do not include a principled grounding for that process. The 
combination of the two approaches can be achieved in a number of different ways. One 
approach is to develop integrated environments allowing modelers to flexibly leverage 
the two methodologies in a way that is best suited to the specific requirements of each 
application (Lebiere et al. 2008). An alternative is to provide high-level patterns and 
abstractions that can be formally compiled into cognitive models in a target cognitive 
architecture (Ritter et al. 2012).
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4 � Issues and their mitigation

4.1 � Downward constraints

4.1.1 � Social to cognitive

This issue was laid out plain by Allen Newell about three decades ago (Newell 
1990) in reference to the social band (corresponding to time intervals > 104 seconds 
that represent organizational behavior and other social systems). Newell, thinking in 
terms of the strength of a system’s levels, hypothesized that social bands should be 
characterized as having weak strength, and therefore may not be computing much at 
all, in a systematic way. If Newell’s surmises are correct, then constraining cognitive 
architectures from the social band makes little sense. Anderson’s Relevance Thesis 
(Anderson 2002), put forth about a decade later, does not address the operation of 
social systems in terms of constraining cognitive models; his thesis is more focused 
on the degree to which understanding lower bands, especially the cognitive ( 10−1 
to 101 time scale), are implicated in qualities of higher bands, e.g., educational out-
comes. So, from the cognitive perspective, there might not be much signal from the 
social band that could serve as a useful constraint on cognitive architectures.

However, there are potential approaches towards mitigation of this problem, 
Newell’s thesis notwithstanding. Online social communities often exhibit emer-
gent empirical regularities. For instance, the World Wide Web exhibits many reg-
ularities including the small world organization of link structure and the distribu-
tion of the lengths of browsing paths that users exhibit. The latter has been called 
the Law of Surfing. Many of these regularities have been modeled at the social 
level using variants of statistical mechanics. The Law of Surfing (Huberman et al. 
1998) observes that the frequency distribution of path lengths (number of Web 
pages visited) is well fit by an Inverse Gaussian Distribution, that has a long posi-
tive tail. The key insight at the social level is that a Web surfer can be viewed as 
moving around in a kind of space analogous to the Brownian motion of a small 
particle on a liquid surface. In the case of the Web surfer, the movement is in the 
dimension of expected utility that will be received (or not) when visiting a Web 
page, where the expected utility from continuing on to the next page is stochasti-
cally related to the expected utility of the current page, and the Web surfer con-
tinues until a threshold expected utility is reached. This is modeled as a stochastic 
Wiener process. But, the Law of Surfing can also be predicted from Monte Carlo 
simulations with ACT-R agents (Fu and Pirolli 2007). In contrast to the stochastic 
social models, these finer-grained ACT-R agents can make predictions for spe-
cific Web tasks at specific Web sites, which can be used to predict and engineer 
improvements (Chi et al. 2003). However, the emergence of the Law of Surfing 
from the ACT-R agent simulations is seen as constraint on the cognitive models.

In short, the social band, at least in some domains, does have structure that 
could constraint cognitive modeling efforts. A question that remains is to what 
degree will it be possible to develop general methods across the varieties of social 
domains for the purpose of constraining cognitive models.
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4.1.2 � Cognitive to neurophysiology

The downward Interpret arrow in Fig.  1 could seem paradoxical, given that the 
underlying neural level is often taken as the ground truth of the entire system. 
Neurophysiological findings, however, are often only imperfectly understood. For 
instance, the existence of basal ganglia projections outside of the frontal lobe was 
considered impossible for a long time until recently (Middleton and Strick 1996). 
Even when our grasp of neurophysiology is solid, cognitive architectures can be 
helpful in providing a functional interpretation to existing data by focusing on the 
computational integration of different circuits, that is, answering the question of 
what does this circuit do?. The most famous example in this sense is the interpreta-
tion of the activity of dopamine neurons in terms of reward prediction error signals 
in reinforcement learning (RL) (Schultz et  al. 1997)—an interpretation that bor-
rowed from a decades-old AI theory [temporal difference learning: Sutton (1988)] to 
solve decades of seemingly inconsistent empirical findings on the role of dopamine 
(Bunney et  al. 1991; Schultz 2002). Incidentally, this example perfectly illustrates 
how the Interpretation is further aided by the use of a comprehensive architecture 
on an agents behavior, such as that provided by RL agents. In our case, the adop-
tion of a single architecture (such as ACT-R) to create multiple models provides the 
unifying framework to interpret neurophysiological data. The fact that the activity 
of the same neuronal process must be interpreted in the same way across multiple 
models of different tasks provides additional constraints to maintain the interpreta-
tion consistent.

4.2 � Upward constraints

4.2.1 � Parsimony and generative social science

By uncovering some new relationship or testing some stylized hypothesis of social 
phenomena many classic agent-based models [e.g., (Schelling 1969; Epstein 2002)] 
have demonstrated the value of modeling simple (sans cognitive) agents. For 
instance, Reynolds (1987) illustrates how three simple rules of behaviors can result 
in the emergence of the collective behavior of a flock of birds—what looks like the 
highly coordinated actions of a “leader” is actually the result of three simple rules.3 
These models and many others in the computational social sciences adhere to parsi-
mony, or keeping the model simple such that the model has just enough of right fea-
tures and no more, as a main guiding principle (Miller and Page 2009). Arguments 
for this approach stress the intuitive and interpretive appeal of such models (Miller 
and Page 2009; Gigerenzer et  al. 1999). The purpose of the model may also dic-
tate that the model be parsimonious [e.g., (Reynolds 1987)]. In short, parsimony in 
respect to simple agents has served well as a strategy in generative social science. It 

3  Agent-based models, however, can range in abstraction, from the stylized models just described to 
empirically-driven models; although the latter in no way implies incorporation of cognitive constraints.
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is natural, then, to ask if cognitive modeling breaks with this notion of parsimony in 
modeling social systems.

We think the issue of parsimony in generative social science does not imply any-
thing particular about the use of cognitive architectures in social simulations. Par-
simony implies that model simplicity is considered in conjunction with how well 
a model matches empirical findings. Thus, the issue of whether to include cogni-
tive agents, as defined in the reciprocal constraints paradigm, is largely an empiri-
cal issue. We offer that cognitive constraints may provide the right model and thus 
improve the degree to which a social simulation matches empirical findings. Moreo-
ver, because cognitive models inherit mechanistic constraints from cognitive archi-
tectures, they might actually end up being more parsimonious than agent-based 
models without such constraints.

4.3 � Implementing at‑scale, multi‑scale, theory‑heavy, data‑heavy social 
simulations

The ResolutionThesis claims that at-scale social simulations4 will be improved, in 
terms of a close comparison to real-world empirical data, when informed by neural 
and cognitive sciences. To date, there is very little simulation work that is both at-
scale and multi-scale in a sociological, cognitive and neural sense. This may, in part, 
stem from the fact that these types of simulations present unique challenges (with 
compute resources, theory integration, data fusion, etc.).

Towards the goal of developing at-scale, multi-scale, theory-heavy, data-heavy 
social simulations, we have recently developed a simulation platform called the 
Matrix Agent-Based Modeling Platform5, shown in Fig. 5. In terms of the Recipro-
cal Constraints Paridigm a few points are relevant: (1) the Matrix was developed 
with the precise objective of ingesting modeling efforts in the cogntive science and 
artificial intelligence communities that are designed to capture some form of human 
agency. Thus, it is agnostic to the programming language used to define agents. One 
can write agent models that work with the Matrix in any programming language, 
e.g, Python, R, C and more specialized applications coming from the cognitive 
science and artificial intelligence communities. The model code interacts with the 
Matrix platform using programming language agnostic interprocess commmunica-
tion (IPC) methods (like JSON over TCP/IP); (2) When using the Matrix platform, 
model authors can use generic data structures to afford implementation of virtually 
any social structure (e.g., social interaction graphs) and support the needs of existing 
cogntive architecture libraries (like ACT-R) and deep neural networks (like Lens, 
PyTorch, or TensorFlow); (3) Scalability is built into the platform itself such that 
given a heavy workload (e.g., having large numbers of agents), the computation can 

4  Simuilations on the order of say 104 to 107 agents; examples might include large communities within 
social media platforms; a bipartite graph among patients and care providers within a national health sys-
tem; daily interactions in a multi-national corporation.
5  The ACT-R GitHub example described above used this platform
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be seamlessly distributed across large numbers of machines, without any change in 
the model code.

Through the deveolpment of the Matrix and some preliminary at-scale implemen-
tations with same, we now possess some useful observations, the principal of which 
is that parameter optimization is complicated by the fact that it may be intertwined 
with neural, cognitive and social theory. There are related implications, some of 
which are as follows: First, and something that may preclude the development of 
the class of at-scale social simulations we are considering here, is the fact that much 
of the theory we need to parameterize may not be in usable form (computational or 
mathematical) or may not exist at all. For example, across a large swath of psychol-
ogy, the theory is represented as an interpretation of the statistical analysis of exper-
imental paradigms without benefit of a formal mathematical or computational model 
of proceeses or representational forms. In a similar way, larger-scale population 
observations in sociology and demography, for example, that are based on complex 
survey design only allow inference at the behavioral level and not the psychological 
or cognitive level. Second, simulation parameters may be deeply tied to theory and, 
as such, were likely tuned by other methods (e.g., designed experimental results with 
human subjects). So, what is the precise nature of parameter optimization? Does it, 
for example, include rerunning the experimental paradigms with human subjects (in 
the case of psychological/cognitive theory)? If yes, then the parameters of the exper-
imental paradigm become, in essence, part of the parameter optimization problem. 
And, how would we develop experimental methods with the right level ecological 
and task validitiy for a given social simulation goal? When is it valid to use purely 
observational data? Finally, in the limit, a set of simulation parameters that capture a 
set of theoretical assumptions might be thrown out completely. What would be used 
as a substitute? Another theory or something non-theoretic?

Fig. 5   The matrix agent-based modeling platform: a distributed software environment for agent-based 
modeling and simulation (implemented and developed in Python). It is responsible for (i) updating and 
providing a system view to agents, (ii) control flow logic, (iii) orchestrating agents, (iv) message pass-
ing, where (collections of) agents are independent software processes. Agents are programming language 
independent. Agent developers focus on serial implementation of their algorithms
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One approach we have used with the Matrix to deal with the challenges of param-
eter optimization leverages a methodology that (Reitter and Lebiere 2010) formu-
lated called accountable modeling. That approach is not only a technical solution to 
scaling up the cognitive architecture but also a scientific commitment to an approach 
that explicitly states which aspects of the model are constrained by the architecture 
and which are free parameters to be estimated from data. This commitment helps 
determine which aspects of the social-scale simulation reflect the cognitive mech-
anisms and can be assumed to generalize, and which have been parameterized to 
reflect aspects of the situation not constrained by first principles, and thus will need 
to be estimated from data in new situations. Such an approach actually results in 
simpler, more transparent models that are explicit about their parameters rather than 
trying to camouflage them under a mechanistic veneer.

Given the varied issues around parameter optimization, one approach we are 
implementing currently is the use of highly modular agent architectures. This 
approach builds a task-based behavioral model of agents that captures the statistics 
coming from observational data (e.g., Twitter, Reddit or Github behaviors) in a way 
that is, in the main, devoid of social, cognitive or neural theory. This is considered 
a base model from which aspects of neural, cognitive and social theory can be inte-
grated in a modular way.

Our observations wrought from our experience in building an at-scale, multi-
scale, data-heavy, theory-heavy social simulation really amount to a set of questions 
and issues, with less in the way of answers—the Matrix was developed to begin 
their exploration. It is probably obvious, but social simulations of the type we are 
considering here will require sustained efforts that are deeply interdisciplinary in 
nature.

4.4 � Language

The study of how languages change over time (e.g., from Old English of Beowulf 
through the Middle English of Chaucer’s Canterbury Tales to modern-day English) 
leads to a view in which language is a fundamentally fluid social construction that 
arises and changes due to complex interactions between the communal need for 
effective communication and the cognitive constraints on learning and processing in 
individual language. In the cultural evolutionary framework (Croft 2008), the emer-
gence of increasingly regular and complex utterances arises through the processes of 
(1) the continual generation of novel elements and constructions by individual lan-
guage users, and (2) the selection, reuse, and propagation of variants by other users 
as a function of cognitive biases and social/communication influences (Hruschka 
et al. 2009). This framework is, in concept, within the domain of the RCP.

There are two key dimensions in studying language change: the social contact 
structure among language learners (agents) and the language acquisition mecha-
nism invoked for them. In the literature, contact structure is most commonly of two 
classes: random mixing, whereby contact is assumed to be equally likely among 
members of a population, and iterated, whereby each member of the population 
teaches only one other member of the population in a one-dimensional chain. Recent 
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work has begun to examine the implications of more complicated social network 
structure (Ke et al. 2008; Lou-Magnuson and Onnis 2018). However, a clear limi-
tation of most existing work is the lack of sophistication in the assumptions about 
diffusion dynamics in the context of realistic, human-like social network struc-
ture. Further, the mechanisms for individual language acquisition range from the 
very simple and abstract, e.g., replicator dynamics (Nowak et al. 2001; Pais et  al. 
2012) and simple contagion (Fagyal et al. 2010) to Bayesian inference (Griffiths and 
Kalish 2007) to detailed psychological process models (e.g., neural networks captur-
ing phonology/morphology at a micro level (Hare and Elman 1995; Polinsky and 
Van Everbroeck 2003). The advantage of simple language acquisition mechanisms 
when dealing with populations is that the dynamics of language evolution can often 
be studied analytically, but only at the cost of psychological plausibility.

Human language, we submit, promises to be a very fruitful area for development 
of the RCP and the exploration of Resolution Thesis. Our understanding of language 
processing at the cognitive and psychological level is precise (in terms of temporal 
scale), developed in computational formalisms and understood from a developmen-
tal perspective. We can paint a similar, parallel story with respect to our understand-
ing of social structure and dyamics. The combination of these two in a principled 
way should yeild benefit.

5 � Discussion

Crossing levels of scale or analysis inevitably takes one near to deep scientific issues 
that echo notions pointed out 50+ years ago in Simon’s “Architecture of Complex-
ity” paper (Simon 1962) [see also (Anderson 1972) for similar early example]. 
Our thesis does not imply that the simplifying assumptions used to study large 
scale social or economic phenomena (using economic or sociological methods) 
are wrong, but that they are, in the end, deeply intertwined with human cognitive 
and neural processes. Nor does our thesis claim that, because cognitive and neural 
models were not developed with large scale social systems in mind, they are wrong. 
We do, however, want to point out that one should acknowledge that when studying 
a part of a social system (e.g., cognition) it is nontrivial to get the other levels of 
scale right (e.g., social network dynamics). It is equally important, when design-
ing at-scale simulations, to remember that the academic and professional disciplines 
that are called upon to contribute theory will mostly likely not provide off-the-shelf 
functionality in terms of parameters and functions.

In some sense, what we know about social systems is a patchwork of many disci-
plines and methods. The Reciprocal Constraints Paradigm was designed to provide 
a tighter knit, so to speak. In this sense, its a repair, but one with a clear objec-
tive. The RCP attempts to provide what is naturally given to the study of biological 
structures in nature, e.g,. the macrotermes bellacosi nest (temite mound), where a 
key objective is to understand how are such structures built from a multi-scale per-
spective: genetic, neurobiological, cognitive, behavioral and social. Each perspec-
tive lends a hand in explaining the structure of the mound. More generally, the study 
of the system and its constitutent features and parts is driven by a set of explananda 
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(e.g., the termite mound: how did it get there and what does it do?). This is the per-
spective and approach advocated by the Reciprocal Constraints Paridigm for stud-
ying human social systems—the constraints are designed to get us, potentially, to 
the same goal as if we used a more holistic biologically-inspired approach from the 
start.

Beyond the RCP, we might reasonably consider starting from scratch by leverag-
ing the perspective of biology6 for the study and simulation of human social sys-
tems. The driving explanandum might start at the top (e.g., markets, sexual repro-
duction patterns, social stratification, warfare, government structures, etc.) and work 
would then continute both down and up levels of scale as needed to explain key 
macro and micro patterns of the social system, but with the key explananda in mind. 
This notion isn’t meant as a mere provocation, but only as a way to guage what we 
already know and to provide potential alternatives to knowing it differently. These 
and other questions fall beyond our thesis and the RCP but may provide fodder 
for future generations and help to keep in perspective the current state of the art in 
terms of our understanding human social systems. The decision to replace an old 
quilt, patches and all, with something entirely new is never easy, and not only for 
sentimental reasons. Some of the patches were undoubtedly well constructed and, 
potentially, still of use.
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