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1 Introduction

1.1 Classes of Metacognitive Processes

Confusingly, researchers have used the term “metacognition” to indicate a
number of heterogeneous mental phenomena. At the highest possible level, the
label encompasses any kind of knowledge and mental processes that have one’s
own cognition as its object [16].

This definition includes low-level evaluations of one’s own memory (feel-
ing or knowing, familiarity, and meta-memory judgements) and performance
(feeling of confidence in one’s own decisions) as well as complex, deliberate
reflections about one’s own cognition (such as assessing whether you would
be able to pass a test), scaling up to complex forms of reasoning (e.g., solving
an induction puzzle, such as the “three wise men”, which requires consider-
ing different scenarios in which the thinker might have different amounts of
knowledge).

1.2 Automatic vs. Deliberate Forms of Metacognition

To impose some order onto these phenomena, several authors have proposed
their own taxonomies of metacognitive processes [16, 44, 65]. For convenience,
in this chapter we will draw a line between meta-cognitive processes that are
deliberate and meta-cognitive processes that are automatic. In the terms popu-
larized by Daniel Kahneman, deliberate metacognitive processes are examples
of “System 2” processing, while automatic metacognitive phenomena are ex-
amples of “System 1”7 processing. Within the metacognition literature, this
taxonomy is perhaps closest to Flavell’s distinction between “metacognitive
experience” and “metacognitive knowledge”’; however, as the remainder of the
chapter will make it clear, the difference between automatic and deliberate
metacognition is more directly related to a computational approach.

25



26 An Architectural Approach to Metacognition

Most of the deliberate forms of meta-cognition can be thought of as a form
of reasoning: When agents are engaged in this form of metacognition, they
are effectively “thinking about thinking”. They might, for example, search
their memory to assess whether they possess some particular knowledge or
skill, or whether they can explain how they performed a task. In a subset
of paradigms that are often singled out as quintessentially meta-cognitive,
the nature of reasoning is recursive: When an agent is engaged in a meta-
cognitive task, they are internally simulating what they would do in a specific
situation. A specific variant of these tasks involves reasoning not only about
one’s own mind, but about other minds as well. This is the case of collaborative
or competitive tasks such as the prisoner’s dilemma, in which an agent might
engage in thinking about what they would do in response to another agent’s
actions. This particularly elaborative form of reasoning, which involves taking
both one’s perspective and that of a different agent, is also known as Theory of
Mind [34, 59].

The types of metacognitive processes that are automatic, on the other hand,
do not involve any form of reasoning. They involve, instead, the perception of
specific signals that mark the status of cognitive processes, and which are likely
generated spontaneously and automatically.

One such example is the phenomenon known as feeling of knowing [29].
When asked a question, individuals can often respond whether they know the
answer faster than they can provide the answer itself. An extreme example of
this feeling of knowing is the frustration associated with the “tip of the tongue”
effect [8], i.e. the familiar feeling of almost remembering a particular fact (e.g.
the name of an actor in a movie) without being actually able to retrieve it. A
second example is the feeling of response conflict, or the feeling of mental
impasse that occurs when different responses are competing for execution, or
when a prepotent one needs to be suppressed. Note that these forms of meta-
cognition are automatic in the sense that they are signals generated without the
agent’s intention. Their use might still be deliberate, and their perception might
spurn higher-level forms of thinking.

One striking distinction between these two classes of metacognitive phe-
nomena is their different speed: deliberate metacognitive processes are slow,
while automatic ones are fast. Consider, for example, the case of meta-cognitive
assessment involved with asking someone whether they know the answer to a
fact. This typically involves the deliberate scanning of one’s own memory and
some time to respond. In contrast, the feeling of knowing the effect, which func-
tionally contains the same information (that is, whether a memory is present)
is fast and automatic, to the point that individuals can correctly state they know
an answer before they have actually retrieved it [64].
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Another relevant distinction is that automatic processes have well known,
idiosyncratic, and localized neural signatures [49, 75]. In contrast, virtually all
the types of reasoning discussed before share similar neural signatures, typically
involving the ”multi domain system”—a network of interconnected brain regions
that is involved in virtually all forms of difficult mental processing, and includes
regions involved in attention and working memory [13].

1.3 Implications for Cognitive Architectures

From a cognitive architecture perspective, the distinction between automatic
and deliberate processes is particularly important. In cognitive architectures,
the most automatic mechanisms (for example, those that control the execution
of procedural knowledge or the access to declarative memory) can be consid-
ered as architectural primitives and fundamental features of the system, while
the least automatic and more deliberate processes can usually be simulated
using the architecture’s built-in primitives [69]. Thus, from an architectural
perspective, there is no reason to believe that any deliberate, System 2-like
form of metacognition is, in itself, any different from any other form of rea-
soning. But the level of automaticity that is characteristic of System 1-level
processes, together with their specific neuronal signals, suggests that these type
of metacognitive signals are themselves part of the fundamental functions of
the architecture.

Of course, the distinction we have outlined is not clear-cut. Automaticity per
se does not require the existence of any primitive; reading, for example, is a
highly automated capacity (it is almost impossible not to read a word in front
of us, which is the reason why the Stroop effect exists: MacLeod 40) and yet
the cognitive system is not born with a “reading” module—it takes years of
practice to learn how to read, and the process results in substantial rewiring of
large portions of the brain.

Conversely, it might be argued that at least some forms of deliberate, System-
2-level metacognitive phenomena do indeed count as architectural primitives.
Consider, for example, the set of reasoning tasks that are described as Theory
of Mind. A few paragraphs above, we presented them as some of the higher and
most sophisticated forms of reasoning; in fact, younger children and animals
consistently fail at them. And yet, many researchers have pointed out that Theory
of Mind tasks might be rooted, at the neural level, in the existence of mirror
neurons . Mirror neurons in the primate brain have the unique property of firing
both when an animal is executing a specific movement and when the animal
sees the same movement executed by a different agent [55]. Because of their
unique property, they have been speculated as the foundational mechanisms by
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which primates, and perhaps other animals, understand other agents’ intentions
and take other agents’s perspective [23]. Mirror neurons are definitely a basic,
“architectural” property of the human brain; thus, if they are necessary for TOM
tasks, one must conclude even higher-level reasoning tasks might ultimately be
rooted in some fundamental metacognitive mechanism in the human brain.

1.4 Metacognitive Measures

The author Alfred North Whitehead summarized metacognitive awareness best:
“[t]he purpose of thinking is to let the ideas die instead of us.” ! Metacognition
provides an imperfect set of internal feedback and calibration signals that help
provide robustness to decision-making in the face of resource-limited cognitive
capabilities in complex, open-ended environments. Two factors greatly influ-
ence this robustness: 1) the relative confidence in our (or others’) capability to
successfully complete a task, and 2) an internal estimate of the effort required
to complete a task. Perhaps the most well-studied measure of metacognition is
the confidence judgment. For the purpose of this paper, we will not describe
potential differences between confidence and certainty (see 52). A common
feature of confidence judgments is that there is an initial tendency for novice
participants to exhibit overconfidence when learning a new task (60; also see
70, 62), followed by a period of underconfidence with practice when the task
is challenging [33, 27], and continued overconfidence in relatively-easier tasks
[58]. Furthermore, when participants know that they must generate a confidence
score, their response times tend to slow and their responses tend to get more
accurate [60]. This means that explicitly generating a confidence judgment
actually alters the decision-making process.

What makes confidence so interesting is that it can be dissociated from
accuracy. Confidence leak occurs when the confidence judgment from recent
trials intrudes on current confidence judgments, whereas the same is not nec-
essarily the case for accuracy. Similarly, cue salience can differentially impact
confidence and accuracy in the same task [66]. In perceptual tasks, a posi-
tive evidence bias occurs when confidence over-weights the objective evidence
whereas task accuracy is unimpacted (effectively a confirmation bias which
occurs for confidence judgments as opposed to accuracy).

A second measure of metacognition is the ability to estimate the effort
required to complete a task. Although similar to confidence, this ability is not
perfect. This prediction influences how much effort we put towards studying for
atest [17, 32] and our relative attention allocation in perception [57]. Similar to

I Astute readers using their metacognitive skills will recognize that this is a frequent, but
apocryphal, attribution to Whitehead, and is probably a paraphrase of a passage in [51]
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confidence, novice participants tend to overestimate their own capabilities and
underestimate time demands when assessing the effort required to complete
a novel task. Recent evidence shows that ready access to the internet may
exacerbate this mis-estimation as the availability of information online provides
a false sense of knowing [14, 2].

1.5 Functional Benefits

What sets metacognitive capabilities apart is not only that we are able to
identify our own (or other’s) internal states, but that we are able to evaluate
and reason over these states [17, 50]. This provides a robustness that is unique
to human decision-making (compared with Al-based methods). One’s internal
awareness of confidence/certainty works with an estimate of effort to integrate
with simulation and experience to form a prediction error feedback signal to
drive (often unsupervised) learning [53, 12, 74]. Specifically, metacognition
mediates the relationship between executive functioning and self-regulated
learning (18; for a review see 32). The major benefits of this is that we are able
to allocate resources based on specific goals, and failures of this signal (i.e., mis-
calibration) provides motivation to adapt by increasing skill, increasing effort,
and/or seeking external resources (e.g., social interactions). It also provides for
an estimate of whether the cost of the goal is worthwhile (‘is the juice worth
the squeeze?’).

What specific benefits does this provide? First off, metacognitive signals
provide the motivation to change social attitudes, update beliefs, and enhance
strategic learning outcomes to match our current goals [50, 67, 7]. Specifically, it
provides an estimate to balance effort with reward to maximize a goal, which can
also trigger when to learn (e.g., how hard to study; 9). With resource constraints,
it provides the drive to satisfice (see 61 for a discussion). [1] showed that our
tendency to underestimate the time requirements when studying complex topics
is due not only to estimating confidence of how close one was towards achieving
a predetermined aptitude (i.e., a judgment of learning), but also a top-down
assessment of how much time it should have taken with reduced motivation
and premature completion of learning. While possibly seen as a negative, this
actually avoids the sunk-cost fallacy when one’s judgment of required cognitive
effort is mis-calibrated.

Another benefit is that we can use metacognitive estimates to distinguish
between things that we do not know and things that we have forgotten [26, 24].
If a given event should have been memorable and was not recalled, then it was
likely something that one had never known. Conversely, if a given event should
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not have been memorable and was not recalled, it was more likely to be judged
to be forgotten.

While the current section has focused on several functional benefits that
metacognitive awareness provides, limits of our ability to use metacognitive
signals can sometimes lead us to validate negative perceptions and use bias-
prone heuristics [43]. Metacognitive signals provide motivation to change atti-
tudes/beliefs and can enhance learning, but can just as easily cause us to harden
our viewpoints when biases get in the way. Blindness to our biases and lack of
skills (e.g., the Dunning-Kruger effect; 15) leads to poor calibration, and poor
performance on self-regulation.

2 Metacognition in Cognitive Architectures

A major challenge in defining metacognition is to distinguish it from “reg-
ular” cognition. Metacognition has been defined as “the ability to monitor
and adaptively control one’s cognitive processing or thinking about thinking”
[48]. However, human cognition has many ways of monitoring and adapting
its behavior in various contexts, many of which are viewed as part of every-
day behavior. What is needed to properly define metacognition is therefore a
reference baseline for the structures and mechanisms that constitute “regular”
cognition. Cognitive architectures provide a natural integrative framework for
that definition.

Following his insight that a divide-and-conquer approach to modeling hu-
man cognition could not provide a road map to its ultimate goal [45], Newell
proposed the concept of unified theories of cognition, implemented computa-
tionally as cognitive architectures [46]. The last five decades has seen a number
of diverse proposals to explore the luxuriant space of cognitive architectures
[30]. We will focus here on a particular architecture, ACT-R, specifically aimed
at modeling human cognition from a neuro-psychological perspective [5].

The ACT-R cognitive architecture (Figure 0.2) is composed of a set of mod-
ules with dedicated functionality, localized in specific brain areas [4]. The
central module, procedural memory, controls the flow of information between
other modules using condition-action pairs, aka production rules. The interface
between modules consists of a set of buffers, collectively known as working
memory. Each buffer is attached to a particular module and can hold one piece
of information, known as a chunk, at a time. When a production rule is selected,
it can change the content of one or more buffers, triggering corresponding pro-
cesses in the associated module. Example actions include shifting attention or
recognizing an object in the visual module, or retrieving a piece of information
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Figure 0.2 ACT-R Cognitive Architecture

from the long-term declarative memory module. Those processes typically op-
erate on a combination of symbolic knowledge structures, such as the chunks
in memory that are represented as sets of attribute-value pairs, with attached
subsymbolic quantities that are learned statistically to reflect the structure of the
environment and control access to information. The results of those processes
ultimately become available in the corresponding buffer. The procedural mod-
ule can then detect the asynchronous change and attempt to match the condition
part of its production rules against the new state of working memory, and the
cognitive cycle repeats.

A common assumption is that awareness is associated with information
present in the buffers while the internal contents of the modules are not explic-
itly accessible. For instance, while we can retrieve information from long-term
memory, that process is probabilistic and approximate and we cannot directly
know the contents of our memory. In particular, we do not have explicit ac-
cess to the subsymbolic quantities (e.g., the activation of memory chunks that
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determine their probability and latency of retrieval) that modulate cognitive
processes. However, that absolute encapsulation of the contents of cognitive
modules is difficult to reconcile with the limited degree of awareness of our
own cognitive processes described in the previous section. Thus, we propose
the following conjectures defining the nature of metacognition in the context
of cognitive architectures:

Conjecture 1: Metacognition involves extracting information about mod-
ule processes

It is essential to emphasize the fundamental distinction between information
about processes as opposed to information about knowledge, even though of
course processes operate on knowledge. Information about knowledge, e.g. the
activation of a particular chunk, is local, specific to that specific item, and
encapsulated in the module. Information about a process reflects the entirety
(or at least a wide range) of the module content, e.g., the activation of all the
chunks competing in a retrieval request, and can be reflected in a metacognitive
signal.

Conjecture 2: Metacognitive information is quantitative and approxi-
mate rather than symbolic in nature

Metacognitive information about processes is not symbolic but rather ex-
presses graded quantities that provide functional insight into those processes
such as probability of success, degree of competition, confidence in the an-
swer, and salience of various relevant factors. Despite the quantitative nature
of the information, it is not subsymbolic but rather cognitively accessible and
actionable.

Conjecture 3: Metacognitive information is available in working mem-
ory for cognitive processing

Even though metacognition is a distinct aspect of human cognition, it con-
tinues the architectural pattern of making information extracted from cognitive
modules available in working memory for further processing. One possibility
is to extend the current distinct distinction between content buffers that hold the
result of module processes and state buffers that currently hold the state of the
module, i.e. whether the module is currently free or busy (to prevent requesting
another operation when a module is currently busy). Note that these conjectures
are about the monitoring role of metacognition. No additional assumption is
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made about any additional metacognitive processes that would act on the result
of that monitoring:

Conjecture 4: General cognitive processes are sufficient to respond to a
situation detected by metacognitive monitoring

Once metacognitive signals are made available into working memory, the
information they convey can be processed using the standard mechanisms that
an architecture can employ to process any other information. In particular, all the
forms of deliberate metacognition (including inference about one’s knowledge
and theory of mind) can be implemented using the standard tools that allow
any cognitive architecture to reason and problem-solve.

3 Computational Cognitive Models of Metacognition

We describe here some examples of the kind of metacognitive ability con-
jectured in the previous section. While those models were developed in the
context of the ACT-R cognitive architecture, they were prototypes that were
not integrated in the specific way conjectured above. Rather, these examples
are intended to illustrate the kind of metacognitive signals that can be extracted
within the cognitive architecture framework and the functional benefits that
they could confer.

3.1 Visual Perception

One of the key functions of visual perception is object categorization. The ACT-
R visual module operates in a way reflecting the principles of human vision:
it directs attention through a request in the visual-location buffer then requests
the object at that location in the visual field to be encoded with the result to
be made available in the visual buffer. Object recognition in the ACT-R visual
module is fairly primitive and only operates on symbolic representations typical
of a computer screen used in cognitive psychology experiments. While in that
context object recognition can operate according to a well-defined standard,
the same is not true in the real world, where interpreting the content of visual
scenes is rife with uncertainty. In that context, obtaining estimates of the quality
of the output of the recognition process, such as probability of the accuracy of
the judgment, would be highly desirable. However, those estimates would be
based on an underlying model whose (in)correctness would likely be correlated
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with that of the response itself. Instead, indirect measures of correctness such
as confidence might be more realistic.

To explore those possibilities, we combined the ACT-R cognitive architec-
ture with a neurally plausible vision model reflecting the structure of the human
visual cortex [28]. That model, based on the Leabra neural architecture, is a
massively parallel neural network similar to convolutional neural networks but
using a neurally plausible algorithm combining top-down error correction with
bottom up Hebbian self-organization [47]. The original approach to this inte-
gration [72] is to extract global activation quantities from the neural network,
including the average activation of the last layer featuring a distributed repre-
sentation (called the IT layer by analogy to its equivalent in the human visual
system) and the maximum activation of the final winner-take-all layer. Those
metacognitive quantities are used to build a classifier to detect low-confidence
categorizations. When categorization confidence falls below a threshold, a new
view of the object is taken and a new cycle of categorization is initiated. The
iterative process continues until the confidence threshold is reached and a final
categorization is accepted, or a cycle limit is exceeded and the system gives up.
The second approach [73], is similar to the first but, instead of extracting scalar
metacognitive signals of limited resolution, it introspects into the IT layer to
extract the most abstract distributed representation of the object used for cate-
gorization. That representation is then associated with the object identification
in the declarative memory of the cognitive architecture. The cognitive model
can then use memory retrieval processes to determine if the representation is
similar enough to other objects of the same type. If that similarity judgment
falls below a threshold, then it is determined that the object belongs to a new
category. The cognitive model then provides top down input to the visual model
to create a new object category and start training it with the current object. This
combined system proves capable of accurately learning entirely new object
categories without any external supervisory feedback.

Two aspects of this approach to visual metacognition are worth emphasizing.
The first is that a hybrid symbolic-neural system provides a natural implemen-
tation for the kind of perspective that we are proposing, with the metacognitive
monitoring signal extracted from the internal dynamics of the neural sub-system
and made available to the symbolic cognitive system. The second noteworthy
aspect is that the intervention following the generation of the metacognitive sig-
nal detecting an exception condition (a failure to properly recognize an object
due an insufficient view or lack of training on that specific category, respec-
tively) does not require additional metacognitive capabilities. Instead, it uses
standard cognitive mechanisms such as declarative memory representation and
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pattern matching to implement strategies designed to remediate the situation
(taking another perspective, or learning a new object category, respectively).

3.2 Declarative Memory

Declarative memory is the long-term repository of experience and knowledge in
the cognitive architecture. ACT-R does not draw a distinction between episodic
memory, holding first-person experiences, and semantic memory, holding more
abstract forms of knowledge. But, like other modules, it shares the bottleneck of
that potentially vast amount of information being accessed through a limited-
capacity buffer that can only hold a single chunk at a time. One can think of
it as a form of focusing similar to visual attention, where a pattern is placed
in the retrieval buffer requesting the most relevant chunk to be retrieved and
deposited back in the same buffer. Usually, the pattern requesting the retrieval is
underspecified, leaving many potential chunks in declarative memory eligible
to be retrieved. As mentioned previously, the eligible chunk with the highest
activation is retrieved, reflecting several statistical factors such as frequency
and recency of access, associative priming from the current working memory
context, and degree of match to the requested pattern. The latency of declar-
ative memory retrieval is typically on the order of hundreds of milliseconds,
meaning that only a few chunks of long-term information can be retrieved per
second. Providing relevant information given these constraints is an incredibly
difficult problem to solve for the memory system. Flawless performance is far
from assured, which makes the metacognitive ability to introspect into declar-
ative memory retrieval processes highly desirable in order to inform cognitive
strategies designed to improve the performance and robustness of the system.
For instance, in the case of the feeling of knowing, a measure of the probability
or closeness of success in the event of retrieval failure could trigger future
attempts at retrieval, perhaps combined with a strategy such as priming from
related information that could improve the probability of a successful retrieval.

We illustrate the kind of metacognitive signals that can be extracted from
declarative memory retrieval processes and the use that can be made of them us-
ing an example of decision making applied to cyber security [39]. The cognitive
model follows an approach called Instance-Based Learning (IBL; [25]) which
makes decisions by generalizing from instances of experiences held in declar-
ative memory using memory retrieval processes, in particular a mechanism
called blending [38] that aggregates multiple chunks to produce a probabilistic
expected outcome. The task is a simulated cyber security experiment involving
an insider attack on a number of potential targets with distinct characteristics.
After atarget is chosen, a deceptive signal is given to try to convince the intruder
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not to attack. The original deceptive signal generated using a Stackelberg game
theory paradigm was found to be suboptimal against actual human subjects.
Instead a personalized cognitive model aligned against a specific attacker’s
behavior trace is shown to be a better predictor of individual human behavior.
The model is then used to optimize the deceptive signal to a specific attacker
by extracting from the model a metacognitive signal of the strength of belief
(i.e., trust) in the signal. That level of strength is computed from the activation
of the relevant beliefs in memory, specifically past instances of success and
failure in attacking in the presence or absence of a signal, which reflects the
frequency and recency of past experiences. That metacognitive quantity does
not provide direct access to the activation levels of specific memories, which
would be cognitively implausible, but rather the relative strength of one set of
experiences against another.

A second metacognitive signal called cognitive salience is extracted from the
model to quantify the relative reliance of the various target characteristics in the
selection process. It is computed as the derivative of the output of the blending
process used to generate expected reward for attacking each target with respect
to the various features defining those targets. Again, it does not provide access
to any specific subsymbolic quantity in memory but rather reflects the overall
state of memories relevant to the retrieval process. This concept of cognitive
salience was originally defined for the purposes of explainable Al to explain
to a human user the underlying basis of decisions made by an intelligent agent
[42]. In this case, the cognitive salience values can be used to shift coverage
toward targets whose characteristics are more salient to a specific user. As
for the perceptual modules described in the previous section, the interventions
driven by signals such as trust or salience extracted from memory retrieval
processes are not metacognitive in nature but rather can be enacted by the same
kind of cognitive decision strategies that are the object of the introspection.

4 Discussion

In this chapter, we have argued that metacognitive phenomena can be divided
into automatic and deliberate, and and that, from a cognitive architecture point
of view, the first ones can be conceived as fundamental architectural primitives,
while the second ones can be achieved using the architecture’s standard pro-
cesses, once signals of the first type are detected. Although the conjectures and
the theory of metacognition exposed in this paper were formulated in reference
to cognitive architectures, they can be extended at lower and higher levels of
analysis.



4 Discussion 37

At the lower level, our conjectures are broadly compatible with the principles
of predictive coding in neural systems [54, 21], that is, the idea that the brain
is organized to maximize homeostasis (or, equivalently, to minimize its “free
energy”’: Friston 20) by minimizing surprisal and maximizing the predictability
of the surrounding environment. Violations of expectations can be used by an
agent to modify its behavior—for instance, by changing its own decision policy
or moving to a new environment [22]

Within this framework, it is possible to conceive of the specific metacognitive
signals that we have reviewed as violations of expectations about how well the
cognitive system itself is working. For example, the feeling of knowing would
be a violation of expectations about retrieving a memory; the “Aha!” experience
in problem solving would correspond to a sudden change in the expectation of
solving a problem; and the sense of confidence or uncertainty about a decision
would corresponding to a sudden change in the perceived effectiveness of a
decision.

One obstacle to reconciling this hypothesis with a cognitive architecture
viewpoint is that predictive coding, as its name implies, requires the cognitive
system to be continually making predictions, and cognitive architectures are not
explicitly built upon this principle. That does not mean, however, that cognitive
architectures do not make predictions: in fact, many aspects of a cognitive ar-
chitecture can be seen as implicit predictions about future states of the world. In
ACT-R, for example, each declarative memory has an associated scalar variable
called activation, which represents the log odds of this memory being needed
at that particular moment in time [3]. The distribution of activations across
all memories, therefore, represents an implicit prediction about what should
be expected in the environment [6]. Similarly, each procedural memory has an
associated scalar quantity, its utility, that is computed through reinforcement
learning and computes the expected future reward of the corresponding skill.
Again, such a term implicitly defines a prediction, and is temporally adjusted
by reducing the mismatch between predicted and actual rewards [63]. Thus,
it is possible to relate our architectural view of metacognition to the larger
framework of predictive coding and active inference.

At a higher level, a wide range of capabilities have been integrated into
cognitive architectures over the last 50 years of exploration of the design space
[30]. A number of architectures incorporate metacognitive features such as
monitoring of internal resources and extracting confidence values, e.g., CLAR-
ION [68], Companions [19], and Soar [35]. Many architectures also include
other features that are often associated with metacognition but that we do not
consider here to be inherently metacognitive, such as temporal representation
of alternative solutions, changing task priorities, storing and using traces of ex-
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ecution, improving analogy or problem solving, and general aspects of theory
of mind.

A complementary direction of research is to apply the insights into metacog-
nition achieved in the context of cognitive architectures to Artificial Intelligence
systems that share many commonalities despite apparent differences. As previ-
ously mentioned, cognitive salience is a technique based on blended retrievals
which can be used to extract which features contribute to a given decision.
When applied to Al algorithms via model tracing (having a cognitive model
make the same decisions as an Al, or human, agent), it is possible to investi-
gate the relative contribution of each feature to the given decision, in a manner
somewhat analogous to SHAP values [41]. A preliminary investigation of using
cognitive salience in the context of models of intrusion detection in a network
defense application has shown potential as a metacognitive signal to understand
feature importance [71].

A recent convergence in the broad diversity of cognitive architectures has
recently prompted an attempt at formalizing an emerging consensus called the
Common Model of Cognition (CMC; [36]). A working group organized in the
context of that effort summarized various aspects of metacognition [31] but,
because of the relative lack of maturity and absence of consensus in approaches
to metacognition, it has not been included in current proposals. However, recent
efforts to elaborate and integrate a theory of emotions with the CMC have led
to a proposal for a treatment of metacognition focused on appraisal theory that
is generally compatible with the approach of the current chapter [56, 37] and
builds off some earlier research integrating affective components to cognitive
models via modeling the physiological substrate of cognition [10, 11]. Inte-
grating physiological modeling into congitive models provides a mechanism to
model affective features such as emotion in addition to factors such as fatigue
and stress. These enterprises further reinforce the belief that metacognition is a
highly active area of research that can be integrated within the existing frame-
work of cognitive architectures and is likely to bear many fruits in coming
years.
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