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Abstract

The psychological literature has put forth several auto-
associative memory models of attitude formation and change.
The status of frequency effects in such models is not well un-
derstood. We compare frequency effects in auto-associative
memory models of attitudes to the well-established frequency
effects found in the ACT-R cognitive architecture. We found
striking differences between the model classes, but only under
some conditions. We discuss future directions that might stem
from this provisional work.
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The Problem
Attitude learning is divided into two camps. In one, we have
memory processes as a central theoretical component for un-
derstanding how attitudes are formed and retrieved. These
typically concern memory for the valence towards an attitude
object. Although typically not formalized, a running debate
in the social psychological literature stems from differenti-
ating or not between simple associative learning or proposi-
tional learning in attitudes. This literature is rich in terms of
evidence on learning (see Corneille & Stahl, 2019, for exam-
ples).

In the other camp, what we will call schema-like mem-
ory models, the primary interest is in attitudinal structure
(Eagly & Chaiken, 1993). Recent work in this area uses auto-
associative memory models to represent not only structure but
also as models of attitudinal memory retrieval (e.g., Dalege et
al., 2016, 2018). In this work, sets of beliefs are transformed
from survey data into a network of associations (e.g., correla-
tions) and modeled using Hopfield-like or Ising-like models.
Learning is not well studied in such models. In its place are
notions of persuasion: under what conditions will a person
stray from their typical attitude retrieval pattern.

In short, little overlap exists between these two literatures.
We attempt a kind of reconciliation between the two by study-
ing attitude learning in the auto-associative memory case.
Much is know about learning in auto-associative memory
systems (e.g., Hopfield, 1982; Hertz et al., 1991). So, we
thought it would be useful to directly compare learning in the
auto-associative case to learning in an empirically-grounded
cognitive architecture. For our comparison, we chose the
currently prominent Causal Attitude Network (CAN) model
(from social psychology, Dalege et al. (2016, 2018)) to the

ACT-R cognitive architecture (Anderson et al., 2004). Our
comparison method, thus, affords the following features: (i) it
will ground the findings in human memory systems via ACT-
R and (ii) it addresses learning in the structural approach to
attitudes.

Design
Across two studies, we compared directly an ACT-R declar-
ative memory model to the CAN attitude model. By directly,
we mean that the input data, the model task and the analysis
methods were identical. There were some differences in com-
puted measures, but the semantics between them were close.

The Causal Attitude Network Model
The CAN model (Dalege et al., 2016; Dalege & van der Maas,
2020; Dalege et al., 2018) was motivated by the need to pro-
vide a dynamic attitude memory retrieval system that exhibits
sensitivity to cues in the social environment. Virtually all the-
oretical work on the CAN model uses fixed, predetermined
weights for its network (see below for the formal specifica-
tion of the system). The CAN model literature references
Hebbian learning as a potential candidate for learning atti-
tudes, yet there have been no studies to date that implement
learning. The heart of this theoretical work focuses on dy-
namical retrieval methods that are derived from Ising-like or
discrete Hopfield models. The technical details of how a typ-
ical CAN model is implemented are as follows–we start with
key definitions:

• There is a graph G = G(V,E) consisting of a collection of
beliefs (the set of n vertices V ) and relations between them
(the set of weighted edges E).

• The state of vertex i ∈V is xi ∈ Ki where Ki is the state set
for that vertex.

• For all i we have Ki ∈ {0,1}

• The system state is x = (x1,x2, . . . ,xn).

• The system global energy H is defined using all i ∈ V by
H(x) = −∑i∈G τixi −∑ j∈NG(i) wi jxix j where NG(i) ⊂ V is
the set of neighbors of i in G, not including i, wi j is the
weight of the edge { j, i} and τi is the baseline parameter
for vertex i. Assume that wi j = w ji.



• For i ∈V let σi : ∏
n
i=1 Ki −→ R be the function defined by

σi(x) = H(x)c −H(x)o where c and o are the current and
opposite state of vertex i.

• For each vertex i we define its vertex function as φi(x) =
1/(1+ e−σi(x)/t) where t is the temperature of the system;
this defines the probability that at any point in time a vertex
i will flip to its opposite state: P(c −→ o) = φi(x).

A typical instance of CAN is a discrete-time, asynchronous
simulation. For each time step: (i) select a vertex i, (ii) com-
pute P(c −→ o) = φi(x) and (iii) use P(c −→ o) directly to
decide if vertex i will change its state. Another common
implementation is to draw n samples of the system state x
from the Gibbs probability distribution. This is computed
as: (i) compute the Gibbs probability distribution of all sys-
tem states xi such that each is P(x = xi) = e−H(xi)/Z where
H(xi) =−τixi−∑ j∈NG(i) wi jxix j and Z = ∑X e−H(x), (ii) sam-
ple from this distribution n times. In our CAN simulations
below, we leverage the latter.

ACT-R Declarative Memory
For this article, we develop a comparison to the CAN model
using the declarative memory module of the ACT-R cognitive
architecture implemented in the PyACTUp Python package1.

Declarative memory is a module in the ACT-R cogni-
tive architecture comprised of discrete data objects called
chunks. Each chunk contains a number l of slots which con-
tain attribute-value pairs. The attribute is the slot name and
the value is the slot content. Access to this symbolic con-
tent is controlled by a subsymbolic quantity called activation,
which reflects the characteristics of the knowledge including
its history and semantics. The activation calculus determining
declarative memory access works as follows:

• The activation A of a chunk is defined as: Ai = Bi + εi +
Pi +Si where Bi is the base level activation, εi is stochastic
noise, Pi is the partial matching correction, and Si is the
spreading activation . The latter term was not used in the
work presented here.

• The base level activation Bi is defined as: Bi = ln(∑i t
−d
i j )

where t is the time lag since the jth reference to chunk i
and d is the time decay parameter, typically set at 0.5.

• Retrieval from memory is computed by selecting the chunk
with the highest activation value, after noise has been
added. Analytically, the probability Pi of retrieving chunk i
can be characterized by the Boltzmann (softmax) distribu-
tion as Pi = eAi/t/∑ j eA j/t where the sum is over all chunks
j matching the retrieval request and the temperature t is a
function of the noise parameter. This is equivalent to view-
ing the activation of a chunk as an estimate of the log odds
of retrieval need (Anderson (1990)).

1https://github.com/dfmorrison/pyactup/

• The latency Ti of a chunk retrieval is inversely proportional
to its activation as: Ti = Fe−Ai when F is a time scaling
parameter.

Although attitudes have been modeled using ACT-R in
prior work (Orr et al., 2021; Pirolli, 2016a,b; Pirolli et al.,
2020), there exists no direct comparison to prominent models
in the social psychology literature.

Data
We generated synthetic data for both studies in this article us-
ing two bit vectors as the basis for the synthetic data. The
intent is for those vectors to represent two distinct attitudes
competing in belief space. To generate the basis bit vectors,
we used the following procedure: Take any random bit vector
of length 16 with exactly eight bits with a state of 1 as the
first pattern ζ1. Then, generate another pattern ζ2 from ζ1 by
flipping four of the 1 bits and four of the 0 bits. This pro-
cedure results in the two patterns ζ1 and ζ2 that are exactly
the expected Hamming distance among all possible vectors
in the configuration space of size 216. For ease of analy-
sis, we fixed ζ1 to 1111111100000000 and generated ζ2 as
1111000011110000; these were our two basis bit vectors.

We constructed five sets of data, all using the same proce-
dure. The basic unit of data was called an example, a sin-
gle 16-bit vector. We first defined five frequency ratios, each
mapping to one of the five sets of data: 50:50, 60:40, 70:30,
80:20, 90:10. The first term of each ratio referenced the num-
ber of examples of ζ1 in the data set; the second term did
the same for ζ2. Each of the five sets of data also contained
one example from the full configuration space of 216 (that
is 65,536 distinct examples define the configuration space).
Thus, each of the five data sets contained a total of 65,636
examples, 100 of which were some ratio of ζ1 and ζ2.

The CAN model assumes that each node in a Hopfield net-
work captures the endorsement or not of a belief that refer-
ences an attitude object (e.g., ’has claws’ is a belief about
cats that is either endorsed or not). We use the same abstrac-
tion in our simulations and will call each bit in the bit vector
an attitudinal belief.

Simulations
The two models (CAN and ACT-R) learned the data via a sin-
gle pass through all examples in a data set (for both Study 1
and 2). The notion, in attitude research, is that each exam-
ple is an abstraction of a social exposure to a set of beliefs
(e.g., from an acquaintance or from mass media). We will
call this the learning phase, which was identical in all condi-
tions across Studies 1 and 2 (except for the distinct frequency
distributions of each condition). We ran two separate studies.

Study 1: Frequency Effects in Free Recall. The objec-
tives of Study 1 were to understand how each of the model
types (CAN and ACT-R) represents differences in frequency
of inputs and how this affects retrieval under free-recall. For
each model type there were five conditions, one for each of
the five data sets, which determined the data that the model



learned. Following learning, each model generated a non-
cued retrieval probability for each of the 216 bit vectors in the
full configuration space. (See the section Design for compu-
tation of these probabilities.) Due to stochasticity in retrieval
in ACT-R, we computed the set of retrieval probabilities for
each model for each condition 30 times, the average of which
was reported for the two basis patterns ζ1 and ζ2.

Study 2: Frequency Effects in Cued Recall. For Study 2,
we used the same method as for Study 1 with one exception,
cuing. In Study 2, we ran the full set of simulations used in
Study 1 two separate times, each with a different cue. The
first time used the more frequent basis pattern ζ1 as the cue;
the second time used the less frequent ζ2.
The ACT-R Model: We defined all chunks to have one slot
for each of the 16 attitudinal beliefs (16 bits in the bit pat-
tern). Each slot had two valid values, 0 and 1. For the learn-
ing procedure, the model encoded all examples in its con-
dition. The frequency of each chunk was reflected in the
data so chunks were reinforced in proportion to their fre-
quency by separate chunk encodings (i.e., each chunk was
reinforced as many times as there were examples in the data).
We used the functions pyactup.learn() to learn chunks
and pyactup.advance() to advance time. All chunks were
learned prior to advancing time and thus retrieval was not
subject to time-dependent decay across chunks. For the
simulation procedure we used the pyactup.retrieve()
function. In Study 1, all retrievals were non-cued. For
Study 2, each cue condition was realized by providing the
cue of the full pattern of interest, either ζ1 or ζ2 e.g.,
pyactup.retrieve({ζ1}). All parameters of the cognitive
architecture were left at their default values, i.e., the decay
rate was 0.5, the activation noise was 0.25 and the retrieval
threshold was 0.0.
The CAN Model: The Hopfield model was constructed by (i)
mapping each of the bits xi to a network node, (ii) generation
of weights wi j using Hebbian learning (Hertz et al., 1991),
(iii) assigning a baseline parameter for each xi as τi. Cuing
(or not) was controlled by the set of τi. In Study 1, all τi were
set to zero, to reflect no cuing free-recall. In Study 2, cuing
was defined as providing the following mapping: xi = 1 7−→
τi = 1 if xi = 1 was learned; else xi = 0 7−→ τi =−1; the latter
condition provided a strong bias for xi = 0.

Results
Study 1: Frequency Effects in Free Recall
The primary result in Study 1, shown in Figure 1, was the
comparison between the ACT-R and CAN attitude models
under no cuing conditions. Both models responded in a way
that captured the frequency ratio between the basis patterns
ζ1 and ζ2 (note: ζ1 is more frequent). When the ratio was
50 : 50 the probability of recall was nearly equal between the
two basis patterns for both models. As the ratio increased,
for both models, the separation in probability of recall grew
as a function of the size of the ratio between the two basis
patterns. Two features distinguish the two models. First,

the CAN model had lower probabilities of retrieval overall.
Second, also for the CAN model, the probability of retrieval
for the less frequent basis pattern ζ2 was very close to zero
for any condition other than the 50 : 50 ratio. It is not clear
whether these two features of the CAN model indicate a func-
tional difference between it and the ACT-R model.

Figure 1: A comparison between the ACT-R (top panel) and
CAN (bottom panel) attitude models in the probability of re-
trieval as a function of each of five conditions of the frequency
ratio of the two basis patterns ζ1 and ζ2 (the former is 65280;
the latter is 61680) in Study 1. No cue was given in this study.
Note: ζ1 is more frequent.

Figure 2 provides some insight into the way the models
operate; it shows the results of a single simulation in the con-
dition 50 : 50. Both models cleanly separated the two ba-
sis patterns ζ1 and ζ2 from the other patterns. For the CAN
model, the point shown with the highest probability of re-
trieval captured the two basis patterns (this is occluded be-
cause of overlap). For ACT-R, one of the basis patterns was
clearly favored, something that was due to the stochastic na-
ture of activation noise in each chunk. Figure 3 shows results
for the 80 : 20 condition. We see that with a high frequency
ratio, both models showed strong separation of the most fre-
quent basis pattern ζ1. Comparing the two conditions (50 : 50
to 80 : 20) surfaces one potentially interesting difference be-
tween the two models in terms of their operation. For the
CAN model, a larger frequency ratio between the two basis
patterns significantly affected the range of the energy surface
via reducing the minimum energy of the system (it deepened
the attractor); the corresponding effect in terms of activation
in ACT-R was much more muted.



Figure 2: The relation between energy (CAN model) or acti-
vation (ACT-R model) (x-axis) and the probability of retrieval
(y-axis) for each of the examples in the full configuration
space (216 examples). Each panel represents a simulation of
the 50 : 50 condition. Note the different scales of the y-axis
in each panel.

Figure 3: The relation between energy (CAN model) or acti-
vation (ACT-R model) (x-axis) and the probability of retrieval
(y-axis) for each of the examples in the full configuration
space (216 examples). Each panel represents a simulation of
the 80 : 20 condition. Note the different scales of the y-axis
in each panel.

In summary, the first order comparison between the ACT-
R and CAN attitude models showed functional similarity, to
a first approximation, in terms of reflecting the frequencies of
the learning environment (see Figure 1). Both models were
good at separating the two basis patterns and their respective
frequencies in terms of probability of retrieval (see Figures
2 and 3). The only notable difference, one for future study,
was that the change in the energy space with an increased fre-
quency ratio was much more significant for the CAN model
than for the ACT-R model.

Study 2

The results for Study 2 were markedly different from Study
1. Figure 4 shows the set of simulations that cued the more
frequent bit pattern ζ1 (we will call these Study 2a). The high-
level feature of these data is that both models operated well
under cue in the sense that under all frequency ration con-
ditions the cue was likely to be retrieved. This was to be ex-
pected because we cued the most frequent bit pattern. Further,
the behavior of the ACT-R model was completely dependent
on the cue; its behavior was the same for all five frequency
ratios. In contrast, the CAN model exhibited a strong fre-
quency effect across the frequency ratio spectrum. We will
come back to this latter point shortly.

The set of simulations (Study 2b) that cued the less fre-
quent bit pattern ζ2 are shown in Figure 5. The comparison
between ACT-R and CAN showed clear differences. As in
Study 2a, the ACT-R model was completely driven by the cue
and showed no effect across the frequency ratio conditions.
In other words, the partial matching term overwhelmed the
base-level activation, partly due to the large size of the fully-
specified pattern (16 slots). However, for the CAN model
we see see an interaction (of sorts) between the context of
the cue and the frequency ratio of what was learned. For
lower frequency ratios, the CAN model cued accurately but
for higher frequency ratio conditions, the frequency factor
drove the probability of retrieval. This, in fact, is the same ef-
fect we saw in Study 2a for the CAN model–the probabilities
of retrieval decreased as the frequency ratio became smaller,
conditions for which the learning context was against, in a
relative sense, the more frequent bit pattern ζ1.

In summary, in both Study 2a and 2b, we see a strong fre-
quency effects for the CAN model and not for the ACT-R
model under cuing conditions.

Figure 4: A comparison between the ACT-R (top panel) and
CAN (bottom panel) attitude models in the probability of re-
trieval as a function of each of five conditions of the frequency
ratio of the two basis patterns ζ1 and ζ2 (the former is 65280;
the latter is 61680) in Study 2a. The cue was the more fre-
quent pattern ζ1.



Figure 5: A comparison between the ACT-R (top panel) and
CAN (bottom panel) attitude models in the probability of re-
trieval as a function of each of five conditions of the frequency
ratio of the two basis patterns ζ1 and ζ2 (the former is 65280;
the latter is 61680) in Study 2b. The cue was the less frequent
pattern ζ2.

Conclusions
In conclusion, the differences in the retrieval behavior of the
ACT-R and CAN attitude models were greater than the sim-
ilarities. Cued recall, a more realistic conceptualization of
the human attitude problem, showed marked differences be-
tween the two models. The ACT-R attitude model was driven
by the cue; the CAN model was driven by both cue and learn-
ing frequency, sometimes to the extent that the cue was ef-
fectively ignored. Although ignoring cues can be adaptive in
some tasks, we do not see the value in the context of atti-
tudes unless other social processes or motives were modeled
in conjunction.

To what extent does this stand as an indictment of the CAN
attitude model? On one hand, the declarative memory model
in ACT-R could be seen to serve as a kind of validation com-
parison: it represents human memory in a way that is not jus-
tifiable for the CAN model. In the CAN model’s defense, we
note that the CAN model was not developed in the context of
memory models. The CAN model was an outgrowth of what
is called the psychological networks approach, an approach
for using graph structure as an alternative measurement ap-
proach for psychological survey or clinical data.

We see our work presented here as highly provisional, a
useful first step in reconciling learning to the structural ap-
proach to attitudes. Future work should study the following
issues: (i) the degree of learning in the Hopfield network
would impact the results, yet it is not clear to what extent
or precisely how, (ii) formal mathematical analysis and com-
parison of learning and retrieval in both the ACT-R and CAN
models, (iii) evaluating the impact of different representations
in the ACT-R model, e.g., by representing each belief as a
separate chunk, (iv) whether the results generalize to partial
cueing of a subset of the full belief set, and (v) the impact
of factors such as recency if a real time learning schedule is

used.
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