A Comparison of Two Memory Models of Attitude Retrieval

Mark Orr! (morr@ihmec.org), Christian Lebiere” (cl@cmu.edu)
Peter Pirolli' (ppirolli@ihmec.org), Don Morrison® (dfm2@cmu.edu

Unstitute for Human and Machine Cognition
Pensacola, FL 32502 USA

ZDepartment of Psychology, Carnegie Mellon Unibv.
Pittsburgh, PA 15223 USA

Abstract

The study of attitudes in the social psychology literature dis-
plays a dearth of computational modeling efforts. The prin-
cipal modeling approach has been artificial neural networks,
typically in the form of simple recurrent networks. The most
recent and influential work in this vein relies on Ising-like or
Hopfield-like models, with a focus on network properties and
parameters such as system temperature and their effects on the
dynamics of attitude formation. This work, however, is sel-
dom informed by or integrated with contemporary cognitive
modeling. This affects (i) the broader validity of the social
psychology approach, (ii) its ability to account for learning in
a principled way, and (iii) an understanding of the dynamics of
attitude retrieval. We describe two studies that provide a sim-
ple but direct comparison between the social psychology ap-
proach and cognitive modeling, focusing on characterizing the
performance differences between the two modeling paradigms.

Keywords: attitudes; dynamical systems; artificial neural-
networks; cognitive architectures

Introduction of the Problem

Content-addressable associative memory networks are the
standard approach to attitude modeling in social psychology
(Monroe & Read, 2008; M. G. Orr et al., 2013; Van Over-
walle & Siebler, 2005). The most recent example is the
Causal Attitude Network (CAN) model of attitudes (Dalege
et al., 2016, 2018). This model learns attitudinal structure
among a set of belief items in a survey via their correlations.
Using the derived weights, a primary focus is to understand
the operating characteristics of the memory network under
conditions of interest. For example, testing retrieval under the
condition that a subset of nodes in the network are present
in the environment or by changing parameters of the model
(e.g., noise in the system during retrieval). Using Monte
Carlo methods, one can generate a distribution of retrievals
to characterize the memory system.

There are obvious parallels between this flavor of attitude
model and the study of attractor dynamics in discrete Hop-
field models. The associative memory problem is a funda-
mental notion that arose from the study of neural networks in
the 1980s that is highly relevant to attitude models: “Store
a set of p patterns &' in such a way that when presented
with a new pattern ;, the network responds by producing
whichever one of the stored patterns most closely resembles
C;.” (Hertz et al., 1991, p. 11, paragraph 1). In this formu-
lation, u = 1,2,..., p represent the patterns and the network
vertices are represented by i = 1,2,...,N. A solution to the
associative memory problem is to find the set of weights, w;;

that result in this behavior; if successful, the stored patterns
E_f represent attractors.

To summarize, the fundamental concern for the social psy-
chologist studying attitudes is the associative memory prob-
lem. They want to know: What attitudes are stored in the
system? How can these be cued? And, how is their retrieval
affected by the current environment and system parameters
(noise, temperature)? The primary computational modeling
approach uses content-addressable associative memory net-
works.

The problem addressed by this paper is the lack of com-
peting attitudinal models that leverage cognitive architectures
(e.g., ACT-R, Soar). The associative memory network ap-
proach is highly idealized and abstract, so much so that it
lacks credibility with respect to human memory systems. We
provide an initial study that compares, in a direct way, the
operating characteristics of the associative memory network
and a cognitive architecture approach. To this end, we com-
pare the CAN attitude model (implemented as two dedicated
R packages) and the declarative memory model of ACT-R
(implemented in PyACTUp) on some very basic operating
characteristics. The results, to preface, show some key differ-
ences between how the two models operate.

The Causal Attitude Network Model

The CAN model was motivated by the need to overcome a
key barrier in computational models of attitudes (Dalege et
al., 2016): how do we learn the weights W and vertex char-
acteristics (e.g., T as a bias of a vertex to be in any given state
x;) from survey data on attitudinal beliefs about an attitude
object? This need was coupled to another need, to provide
a dynamic memory retrieval system, one that is sensitive to
cues in the social environment. In sum, the CAN canon, so to
speak, is comprised of both statistical learning methods and
dynamical retrieval methods, the latter of which is derived
from Isling-like or discrete Hopfield models. One interest-
ing point that will come up shortly is that the learning and
retrieval systems are treated separately.

The technical details of how a typical CAN model is im-
plemented are as follows—we start with key definitions:

¢ There is a graph G = G(V, E) consisting of a collection of
beliefs (the set of vertices V) and relations between them
(the set of weighted edges E).

* The state of vertex i € V is x; € K; where K; is the state set



for that vertex.
e For all i we have K; € {0,1}.
¢ The system state is x = (x1,x2,...,X,).

* The system global energy H is defined using all i € V by
H(x) =—YicgTiXi 7Zj€N(;(i) WijXiXj where N(l) C Visthe
set of neighbors of i in G, not including i, w;; is the weight
of the edge {j,i} and 7; is the baseline parameter for vertex
i. Assume that w;; = wj;.

» ForieVleto;: [T, Ki — R be the function defined by
6;(x) = H(x)* — H(x)° where ¢ and o are the current and
opposite state of vertex i.

* For each vertex i we define its vertex function as ¢;(x) =
1/(1+ e %W/) where t is the temperature of the system;
this defines the probability that at any point in time a vertex
i will flip to its opposite state: P(¢c — 0) = ¢;(x).

A typical instance of CAN is a discrete-time, asynchronous
simulation. For each time step: (i) select a vertex i, (ii) com-
pute P(c — 0) = ¢;(x) and (iii) use P(c — o) directly to
decide if vertex i will change its state. Another common
implementation is to draw n samples of the system state x
from the Gibbs probability distribution. This is computed
as: (i) compute the Gibbs probability distribution of all sys-
tem states x; such that each is P(x = x;) = e (") /Z where
H(x,-) = —T;X; — ZjENG(i) Wi jXiXj andZ=Yy eiH(x>, (i1) sam-
ple from this distribution # times. In our CAN simulations
below, we leverage the latter via an R package developed by
the CAN authors called IsingSampler.

ACT-R Declarative Memory

For this article, we develop a comparison to the CAN model
using the declarative memory module of the ACT-R cognitive
architecture implemented in the PyACTUp Python package'.

Declarative memory is a module in the ACT-R cogni-
tive architecture comprised of discrete data objects called
chunks. Each chunk contains a number / of slots which con-
tain attribute-value pairs. The attribute is the slot name and
the value is the slot content. Access to this symbolic con-
tent is controlled by a subsymbolic quantity called activation,
which reflects the characteristics of the knowledge including
its history and semantics. The activation calculus determining
declarative memory access works as follows:

e The activation A of a chunk is defined as: A;, = B; +¢€&;+S;+
P; where B; is the base level activation, €; is system noise,
S; is the spreading activation and P; is the partial matching
correction. The latter two terms provide context-sensitivity
in retrieval and are not used in the work presented here.

* The base level activation B; is defined as: B; = In(Y; ti;d)
where 7 is the time lag since the jth reference to chunk i
and d is the time decay parameter, typically set at 0.5.

Thttps://github.com/dfmorrison/pyactup/

* Retrieval from memory is computed by selecting the chunk
with the highest activation value, after noise has been
added. Analytically, the probability P; of retrieving chunk i
can be characterized by the Boltzmann (softmax) distribu-
tion as P, = e4i/! Y, j ¢i/" where the sum is over all chunks
J matching the retrieval request and the temperature ¢ is a
function of the noise parameter. This is equivalent to view-
ing the activation of a chunk as an estimate of the log odds
of retrieval need (Anderson, 1990).

» The latency T; of a chunk retrieval is inversely proportional
to its activation as: 7; = Fe 4 when F is a time scaling
parameter.

Although attitudes have been modeled using ACT-R in
prior work (M. Orr et al., 2021; Pirolli, 2016a, 2016b; Pirolli
et al., 2020), there exists no direct comparison to prominent
models in the social psychology literature.

Design

We compared the CAN model, using data modeled with the
CAN model in prior work, to an ACT-R declarative memory
model. Both models encoded (learned) the same data and
were tested in comparable ways.

Data

We used ten items from the 2012 American National Election
Survey. This is a nationally representative sample of 5914 US
adults; N=5728 after deleting respondents case-wise with re-
spect to the variables in our study. That data set captured a
set of beliefs about the presidential candidate Barack Obama
prior to the US general election in Nov. 2011 (these data
were used in prior work with the CAN model and are publicly
available at https://electionstudies.org). The beliefs reflected
the following concepts about Barack Obama with abbrevia-
tions and index value in bold parentheses: ”Is moral”: Mor,
1, ”Would provide strong leadership”: Led, 2, "Really cares
about people like you: Car, 3, ”’Is knowledgeable”: Kno, 4,
s intelligent”: Int, 5, ”Is honest”: Hon, 6, "Makes you feel
angry”: Ang, 7, "Makes you feel hopeful”: Hop, 8, "Makes
you feel afraid”: Afr, 9, "Makes you feel proud”: Prd, 10.
All items were scaled to binary € {0, 1} values where ’1’ re-
flected endorsement of the belief. It is common in the social
psychology attitude literature to assign a valence, positive or
negative, to reflect the evaluation of a belief. We will use
this convention when discussing the results. Eight of the ten
beliefs will be considered to have positive valence with the
remainder to have negative valence (the latter are Ang and
Afr).

Simulations

Each model (CAN and ACT-R) learned the survey data as a
proxy for exposure in one’s environment to others’ beliefs.
Thus, each example to be learned was one response from the
ANES survey data. We conducted two separate comparison
studies after the learning procedure. Study 1: Effect of Noise



on Retrieval. The objective of this study was to understand
the operating characteristics of each model over different de-
grees of system noise and with no cues (to see each system’s
baseline retrieval pattern). Following learning, each model
generated 100 retrievals from memory for each of 16 differ-
ent conditions of system noise (defined differently for each
CAN and ACT-R). The primary output for this study was the
set of retrievals from which we computed the following for
each condition of noise: (i) the number of unique retrievals,
and (ii) the distribution of retrievals. Study 2: Cued Retrieval.
The objective of Study 2 was to compare the CAN and ACT-
R models retrieval characteristics under ten separate cued re-
trieval conditions; each condition cued the memory system
100 times with one of the ten beliefs. For Study 2, we fixed
the degree of noise to a relatively low level.

The CAN Model: For the learning procedure, we imple-
mented the statistical procedure called IsingFit in the R pack-
age IsingFit (van Borkulo et al., 2015) used in prior work with
the CAN model (Dalege et al., 2017; Dalege et al., 2016).
This procedure is a regression-based approach (eLasso) in
which the weights w;; reflect estimated partial correlations
between a vertex i and all other vertices and T; reflects the es-
timate of each vertex’s independent contribution to its proba-
bility of equalling 1. The CAN model simulation procedure
and the model construction are described in the introduction.
For Study 1, all retrievals were simulated using the learned
estimates of w;; and ;. For Study 2, each cue condition (for
each vertex i) was realized by setting the value of 7; to 1; e.g.,
to cue the belief Kno we set T4 to 1. This is standard practice
used in prior work with the CAN model (Dalege et al., 2017;
Dalege & van der Maas, 2020; Dalege et al., 2016). For both
Study 1 and 2 we collected 100 cues per condition.

The ACT-R Model: We defined all chunks to have one
slot per each of the ten attitudinal beliefs. Each slot
had two valid values, 0 and 1. For the learning proce-
dure, the model encoded the 487 distinct response patterns
in the 2012 ANES survey data. The frequency of each
chunk was reflected in the survey data so chunks were re-
inforced in proportion to their frequency by separate chunk
encodings (i.e., each chunk was reinforced as many times
as it existed in the survey data). We used the functions
pyactup.learn () tolearn chunks and pyactup.advance ()
to advance time. All chunks were learned prior to advanc-
ing time and thus retrieval was not subject to time-dependent
decay across chunks. For the simulation procedure we used
the pyactup.retrieve () function. In Study 1, all retrievals
were non-cued. For Study 2, each cue condition was realized
by providing the cue of 1 (endorse) as the sole retrieval slot,
e.g., pyactup.retrieve ({"Hon":1}) included the retrieval
cue that Obama “’Is honest” was endorsed.

Results
Data

The structure of the ANES data, shown in Figure 1, is rep-
resented as the distribution of response patterns, one pattern

per survey respondent. That is, each respondent’s response
pattern was transformed from a binary vector (the index of
this vector maps to the beliefs and the order of the index is
mapped to the order from left to right of the beliefs as written
above) to a decimal value. For instance, if respondent A had
the following response pattern 0000010110, then they would
have endorsed three beliefs (Obama: “Is honest” and "Makes
you feel hopeful” and ”Makes you feel afraid”’) and not en-
dorsed the rest of the beliefs; their decimal value would be
22. This transform makes for efficient representation of the
data for descriptive purposes, as will be clear below, and we
will use it throughout.

It is clear that the data have two prominent response pat-
terns, pattern 10 (freq. of 1329 or 23%) and pattern 1013
(freq. of 763 or 13%). Pattern 10 (0000001010) endorses
only two beliefs about Barack Obama: "Makes you feel an-
gry”’: Ang, 7 and "Makes you feel afraid”: Afr, 9 (these are
the only two negative attributes of Barack Obama). Pattern
1013 is the logical compliment to pattern 10 (1111110101);
this pattern endorses all of the positive attributes of Barack
Obama in the survey item set.

Study 1: Effect of Noise on Retrieval

The next step in our work was to understand and compare
the operating characteristics of the CAN and ACT-R attitude
models. To this end, we studied non-cued retrievals of both
systems. Figure 2 shows the number of unique retrieval pat-
terns by noise level.

For both attitude models (CAN and ACT-R) we see a
marked increase in the number of unique retrieval patterns as
noise is increased. A key difference between the two models
is that the CAN model exhibits more of a step-like function;
it has little change in the number of retrieval patterns until
the noise value reaches 1. Some detail is provided in Table 1.
Here we see that directly before the sharp increase in num-
ber of retrieval patterns (at CAN noise level = 0.5), 92 of the
100 retrieval attempts were either retrieval pattern 10 or 1013.
In Figure 3, in the second row, we show the retrieval pattern
distributions for four noise levels for the CAN model. No-
tice that noise level 1 (panel C*), compared to 0.5 (panel B*),
exhibits a much broader distribution of retrieval patterns. In
short, the retrieval output of the CAN model is very stable
prior to noise value of 1 after which it devolves into a much
less systematic retrieval regime.

The ACT-R model shows more graded increase in the num-
ber of unique retrieval patterns. Yet, in Table 2 we see that
even as the number of retrieval patterns starts to increase—
compare ACT-R noise of 0.4 to 0.5-the two dominant re-
trieval patterns were represented by 87 of the 100 retrievals
for noise level 0.5. In Figure 3, in the first row, we show
the retrieval pattern distributions for four noise levels for the
ACT-R model. Notice that noise level 0.9 (panel C), com-
pared to 0.5 (panel B), exhibits a much broader distribution
of retrieval patterns.

Figure 3 offers three other comparisons between the two
models. First, and most striking, is that the distributions of
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Figure 1: Distribution of responses in the American National
Election Survey, 2012. These data were learned by the CAN
and ACT-R models.
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Figure 2: Number of unique retrieval patterns in Study 1 by
model type over noise level.

Table 1: Retrieval Distributions for CAN

Noise Freq. Retrievals Dec. Retr.
0.11 81 1111110101 1013
18 0000001010 10
0.25 74 1111110101 1013
23 0000001010 10
1 1111010101 981
1 111111 1023
0.50 59 1111110101 1013
33 0000001010 10
3 0000000010 2
<3 1111110000 1008
<3 1111110111 1015
<3 111r1rir - 1023

Table 2: Retrieval Distributions for ACT-R

Noise Freq. Retrievals Dec. Retr.
0.2 81 0000001010 10
18 1111110101 1013
0.4 75 0000001010 10
22 1111110101 1013
1 1111110111 1015
1 0000000010 2
0.5 56 0000001010 10

31 1111110101 1013
4 0000000010 2
<3 0000001000 8
<3 0100000010 258
<3 1110010101 917

<3 1111110010 1010
<3 1111110111 1015
<3 1111111010 1018
<3 1111111111 1023
: I . B P
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Figure 3: The distribution of retrieval patterns by model for
varying levels of noise.

the two models under low noise levels are near complements.
Second, we see clearly that the ACT-R model matches the
frequency pattern observed in the survey data (see Figure 1)
while the CAN model does not; yet both models, with low
levels of noise capture the two most frequent patterns found in
the data, 10 and 1013. Third, both models show some degree
of maintaining their retrieval distribution even under noisy
conditions. In panels C and C* we still see a rank similarity
to panels A and A* respectively given significant noise. In
other words, the first order feature of the learned retrieval dis-
tribution is somewhat robust to a significant degree of noise
in both systems.

In sum, Study 1 shows similarities across the two mod-
els. At lower levels of noise, both models retrieve the two
dominant response patterns found in the data. Although the
CAN model shows a steeper noise profile, the rank order dis-
tributions are captured by both models up to a degree even
with significant noise. However, we do see a very marked



difference in the relation to the survey data response distribu-
tion and the model retrieval pattern distributions. The ACT-R
model captures it well while the CAN model provides more
like a complement to the survey data distribution. Specifi-
cally, at noise level 0.5 for both models, the ACT-R model
roughly reproduces the relative ratio of the two most popular
patterns in the data set (10 and 1013, respectively), while the
CAN model also roughly reproduces that ratio but inverted.
We will address this latter point in the Conclusion section.

Study 2: Cued Retrieval

The next step was to compare the CAN and ACT-R attitude
models when cued. Figure 4 shows the Wasserstein distance
between the distribution of retrieval patterns for each cued
condition and a baseline non-cued distribution of retrieval
patterns (generated in Study 1; for both CAN and ACT-R we
used noise=0.5). This provides a measure of the difference
in the low noise, non-cued behavior of the model compared
to the cue for each condition (with the same level of noise).
The first-order results are clear. Both models show a similar
pattern across retrieval cues; both showed clear dips for the
cues Ang and Afr (the only negative beliefs in the item set).
Further, the ACT-R model was clearly higher in Wasserstein
distance across the board.

Figures 5 and 6 shed some light on these patterns. It is use-
ful to characterize each cued distribution in reference to the
referent non-cued conditions in Study 1 (the latter are shown
in Figure 3 in panels B and B*). For the CAN model, we
see that the Wasserstein differences shown in Figure 4 were
driven by the same distribution pattern such that virtually all
retrieval patterns were pattern 1013, excepting the two, nega-
tively valenced cued conditions Ang and Afr. This behavior
makes sense given that these eight cues were all present in
pattern 1013 and pattern 1013 was very frequent given non-
cued retrieval for the CAN model. The remaining cue con-
ditions Ang and Afr, however, showed a mixed distribution,
largely across retrieval patterns 10 and 1013. This behavior
illustrates a difficulty with the system to operate well when
these two negatively valenced beliefs were cued.

For the ACT-R model, a somewhat different story emerged.
For the eight positively valenced cues, the behavior was sim-
ilar to the CAN model. Notice that this runs counter to the
ACT-R non-cued distribution and the frequencies in the sur-
vey data (see Figure 1). Thus, the ACT-R model provided
a reasonable retrieval despite the frequency demands of re-
trieval pattern 10. This provides a way to interpret the larger
Wasserstein distances for ACT-R in Figure 4 as indicative of
accurate retrieval. For the two negatively valenced cues Ang
and Afr we see a marked difference from the CAN model.
Most of the ACT-R retrievals for these two cues are for pat-
tern 10, a very reasonable response.

In sum, the behavior for the CAN model was driven largely
by its baseline, non-cued retrieval tendencies. This seemed
to work in its favor but only for the eight cues of positive
valence. The ACT-R model, on the other hand, responded
equally well to all cues and did so in the face of the frequency

demands of the learning environment. Thus, the ACT-R at-
titude model showed more appropriate behavior in respect to
its cues compared to the CAN model.

Conclusions

In conclusion, the CAN and ACT-R attitude models showed
marked differences. First, when not cued, both models exhib-
ited retrieval that captured the two most frequent response
patterns in the survey data (patterns 10 and 1013) but the
CAN model generated retrieval frequencies that were nearly
complimentary to the ACT-R model and that were not aligned
with the frequencies found in the survey data. Second, under
cue conditions, the ACT-R model was more adaptive to the
cues and was able to override the frequencies in the survey
data. The CAN model did not exhibit such adaptability.

The conceptual language of the CAN model literature has
not been in terms of retrievals, but in terms of changes in at-
tractor states under perturbation (e.g., fix a value of T; as we
did for Study 2) or differences in attractor states given system-
atic differences in graph topology (e.g., larger values of the
weights w;;s or a more dense set of weights w;;s) (Dalege et
al., 2017; Dalege & van der Maas, 2020; Dalege et al., 2016).
Although there is no technical difference between retrieval or
perturbation in the CAN model, the language of perturbation
captures a different semantic and a different emphasis. The
CAN model is an outgrowth of the psychological networks
literature that originated, in large part, in clinical psychology
(see Bringmann, 2021; Bringmann & Eronen, 2018; Bring-
mann et al., 2019; Burger et al., 2020; Cramer et al., 2016;
Haslbeck et al., 2021; Wichers et al., 2015). This literature
is primarily concerned with the relation between graph prop-
erties and how they can predict changes in the graph states.
Thus, the language of perturbation is apt.

However, we find the extension of the perturbation seman-
tic to attitudinal memory models to be misguided (without
further revision of the CAN model). Retrieval is in reference
to the purpose of the system. In the studies above, we as-
sumed that the survey data was a proxy for a set of social
exposures and the goal of the model was to learn from its so-
cial contexts. This is not the typical emphasis in the CAN
model literature. Yet, understanding the effects of perturba-
tion on a model without reference to what was learned will
not push the CAN model towards a useful, applicable model
of attitude formation.

The resulting graph generated via the CAN learning pro-
cedure (see Design section) exhibits many excitatory positive
weights with a small set of inhibitory negative weights. Thus,
the lack of adaptability to cues shown in Study 2 was not sur-
prising. The system captures correlations but when used in a
dynamic associative memory network, the cuing did not work
well in part because the model was not designed with sensible
cuing in mind. The ACT-R model, by virtue of its grounding
in a cognitive architecture and its underlying rational analysis
of cognition (Anderson, 1990), inherited adaptive and reason-
able cuing behavior. Our final assessment is that, if the CAN
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Figure 6: The distribution of retrieval patterns by cue for the
ACT-R model.

model is to be viable, then it should move beyond an analysis
of its network and think towards a sensible cuing system, in
the name of external validity.

On a more general note we offer the following reflection.
Despite their superficial differences, commonalities between
ACT-R declarative memory and Hopfield-like networks have
been previously exploited. Most notably, Hopfield networks
were used to implement declarative memory in the connec-
tionist implementation of ACT-R, ACT-RN (Lebiere and An-
derson, 1993). Noteworthy aspects include using separate
Hopfield networks for each type of chunks, reflecting dif-
ferent number of slots as well as distinct semantics, and
adding winner-take-all dynamics for chunk identifiers to pre-
vent merging of chunks with similar distributed representa-
tions. The recognition of this duality between cognitive archi-
tectures and connectionist models led to a direct comparison
between ACT-R and PDP models according to a set of crite-
ria for unified theories of cognition (Anderson and Lebiere,
2003). While the two paradigms were judged to have distinct
strengths and weaknesses, they were also found to have com-
monalities for criteria relevant to attitude formation such as
learning and adaptive behavior. Thus, when modeling atti-
tudes, such consideration may inform future work including
a potential unification of the two modeling frameworks.
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