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Abstract

Two claims of the the Causal Attitude Network (CAN) model and the descendent
Attitude Entropy framework (AE) are indicative of significant theoretical hurdles facing
the psychological network modeling efforts of attitudes. The first claim is that the
dynamics of change in an Ising-like attitude network, under perturbation of any one
single node, can be inferred from the static network attributes of said node. The second
claim is that psychological network models of attitudes with Ising-like dynamics will
maximize both attitudinal consistency and accuracy when within the small-world
topological regime. The first claim, one with significant application potentials, has not
been sufficiently tested; the second claim, one with high theoretical novelty, has never
been addressed. Using a set of analytic results and simulations, we found little support
for these claims—in short, the predictions are not logically consistent with the theory.
Our results have implications beyond attitude models to the the larger field of
psychological networks (e.g., in clinical psychology) in reference to how we should
explain and understand their dynamics. KEYWORDS: attitudes, neural networks,
dynamical systems, psychological networks
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Theoretical note: The relation between structure and dynamics in psychological
networks of attitudes

Introduction

Over the past 25 years, the social psychological literature has successfully
integrated some of the computational modeling approaches from cognitive science to
address a range of phenomena: causal attribution, stereotypes, attitude formation,
impression formation, and personality (e.g. Conrey & Smith, 2007; Monroe & Read,
2008; M. G. Orr, Thrush, & Plaut, 2013; F. V. Overwalle, 2007; Read & Miller, 1998;
Smith, 1996; Vallacher, Read, & Nowak, 2017). Constraint satisfaction, typically
formalized and implemented as a kind of recurrent artificial neural network, holds a
strong position in social psychology. Not only does it fit past and current
understandings of a range of phenomena, it offers a formalization of mechanism (see
Read, Vanman, & Miller, 1997; Simon & Holyoak, 2002). Computational models of
attitude formation and change, the topic of this article, are dominated by the constraint
satisfaction formalism (e.g. Conrey & Smith, 2007; Ehret, Monroe, & Read, 2015;
Monroe & Read, 2008; M. G. Orr & Plaut, 2014; M. G. Orr et al., 2013; F. Overwalle &
Siebler, n.d.; Van Overwalle & Siebler, 2005).

Recently, a new class of attitude model has come into the fray. The Causal
Attitude Network (CAN) model and close-cousin Attitudinal Entropy (AE) framework,
have been cast, in their union, as a novel theoretical approach for understanding
attitude formation and change (Dalege et al., 2016; Dalege, Borsboom, van Harreveld,
& van der Maas, 2018; Dalege & van der Maas, 2020)*. This approach stems from the
psychological networks approach that rose to prominence in the clinical psychology
literature over the past decade or so (Borsboom, 2008, 2017; Borsboom & Cramer,
2013; Bringmann, 2021; Bringmann & Eronen, 2018; A. O. J. Cramer, Waldorp, Maas,
& Borsboom, 2010). For purposes of this article, we will dub this class of attitude
model as the CANAE approach or framework or, for simplicity, just CANAE.

The novelty of CANAE, on the surface, stems from: (i) its use of constructs from
statistical physics (e.g., Gibbs and Boltzmann distributions of the configuration space,
pseudo-thermodynamic temperature effects), (ii) its use of constructs from network
science (e.g., global and local topological properties of the networks)?, and (iii) its
learning mechanism.

A bit deeper, however, we see another story. CANAE is an Ising-like model
(Dalege et al., 2016) and, thus, falls within the larger class of constraint satisfaction
models of attitudes. Others have used statistical physics counter-parts in
constraint-satisfaction models of attitude, e.g., the use of energy in Monroe and Read
(2008) or the use of attractors in M. G. Orr and Plaut (2014). Prior work has
considered attitudinal stability as a property of the network topology, expressed in the
form of the magnitude of the edges on a graph (Monroe & Read, 2008) or the network
structure itself (M. G. Orr et al., 2013; Shultz & Lepper, 1996). In principle, then, the
CANAE approach is very closely aligned with prior constraint satisfaction
computational models of attitudes networks.

We claim that the real novelty of the CANAE framework lies in its use of
constructs from network science and statistical physics to develop new kinds of

LTt is referred to as "new."(Dalege et al., 2016, see p. 3, col 1, last paragraph)

2 Under the umbrella of psychological networks
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theoretical predictions, e.g., in respect to the relation between the structure of the
attitude network to its dynamics. The natural path in such theoretical enterprises, to
begin empirical testing of said predictions, has commenced (Chambon, Dalege, Elberse,
& van Harreveld, 2022; Dalege, Borsboom, van Harreveld, & van der Maas, 2017, 2019;
Dalege, Borsboom, van Harreveld, Waldorp, & van der Maas, 2017; Dalege & van der
Does, 2022; Zwicker, Nohlen, Dalege, Gruter, & van Harreveld, 2020).

We think some of these empirical efforts were premature. Some of the new
theoretical predictions of CANAE have not been verified to be logically consistent with
the model-i.e., they may not be derivable from the CANAE model.

Our main objective in this article is to verify the logical consistency of two
foundational CANAE claims. The first claim is that understanding the local topological
characteristics of individual components in an attitude network is sufficient to predict
how perturbation of said components (e.g., via persuasion) will affect the global
dynamics of attitude formation. This issue is of practical import for clinical psychology
(see Bringmann, 2021; Bringmann et al., 2019; Bringmann & Eronen, 2018; Burger et
al., 2020; A. O. Cramer et al., 2016; Haslbeck, Ryan, Robinaugh, Waldorp, &
Borsboom, 2021; Wichers, Wigman, & Myin-Germeys, 2015) and other applied domains
in which persuasion or behavior change are paramount for prevention, intervention and
mitigation (e.g., public health (M. Orr, Mortveit, Lebiere, & Pirolli, 2023; M. G. Orr &
Chen, 2017; M. G. Orr & Plaut, 2014; M. G. Orr, Zeimer, & Chen, 2017), climate
change (Thompson, 2023), disaster preparedness (Schlegelmilch & Carlin, 2023)). The
second claim is that the structure of attitude networks is constrained by a drive to
optimize a trade-off between attitudinal accuracy and attitudinal consistency. (The
desired state is relatively high-consistency without losing too much accuracy.) The
network structure that affords such a trade-off is small-world (see Watts & Strogatz,
1998, for the small-world algorithm). This claim does not reflect immediate practical
concerns, yet, its theoretical novelty and subsidiary implications for learning in CANAE
are motivation enough to warrant verification.

In the remainder of this article we will: (i) provide the necessary technical
background on CANAE; (ii) offer two in-depth studies of the two target CANAE
claims; and (iii) conclude with discussion and conclusions.

But first, we want to frame our work in reference to one of the central scientific
issues in contemporary scientific psychology: the so-called replication crisis (see Nosek
et al., 2022). Our work exemplifies an unsung heroine of the replication crisis: formal
computational and mathematical modeling. In contrast to the oft-sung heroes of this
crisis—better data, better statistical methods and deeper administrative controls (e.g.,
pre-registration)—computational and mathematical modeling are of limited repute,
largely due to the degree to which they are misunderstood in terms of use and value. A
small, nascent effort to mend these rifts has erected a motley set of arguments for the
necessity of formal modeling efforts in scientific psychology (e.g., Fried, 2020; Oberauer
& Lewandowsky, 2019; Robinaugh, Haslbeck, Ryan, Fried, & Waldorp, 2019; Smaldino,
2020), something that is aimed, by necessity, more towards social and clinical
psychology. The cognitive sciences, neural sciences and perceptual sciences use and
train with such models with more regularity. Note, however, that there is an argument
for all of scientific psychology, including these latter sub-disciplines, to persist in driving
towards the development of a mature science, one with a cumulative, systematic march
to overarching theoretical clarity (see Muthukrishna & Henrich, 2019). Our work
presented here hopes to contribute towards this goal in social psychology.
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The CANAE System

The CANAE framework falls within a specific class of constraint satisfaction
models: a content-addressable associative memory network. Notice that Dalege et al.
(2016) assert that CANAE has two defining properties:

...correlations between evaluative reactions stem from pairwise interactions
between the reactions [nodes] and, second, these interactions are aimed at
optimization of the consistency of the evaluative reactions. (p. 5, paragraph
7).

Further, the attitude construct was introduced as the end-state of a dynamic memory
system,

...i.e., the whole network of the evaluative reactions and the interactions
between these reactions represents the attitude construct. (Dalege et al.,
2016, p. b, paragraph 5)

in which activation spreads across nodes:

..., information can flow from one variable to all other variables in a
network. (Dalege et al., 2016, p. 5, paragraph 4).

Finally, observe that Dalege et al. (2016) invoke the Ising model from statistical physics
to summarize their construction:

In the CAN model, attitudes are conceptualized as networks of interacting
evaluative reactions (e.g., feelings, beliefs, and behaviors toward an attitude
object) and the dynamics of the networks conform to the Ising model.
(Dalege et al., 2016, p. 6, paragraph 3)

The Ising model (see Brush, 1967; Cipra, 1987) inspired directly the early work on
content-addressable associative memory models (for an historical view, see Anderson &
Rosenfeld, 1989; Hinton & Anderson, 1989). The seminal work of John Hopfield in 1982
popularized the fact that content-addressable associative memory networks can be
constructed in a manner that is equivalent to the Ising model. The reach of his work
extended to the fields of computational neuroscience, cognitive science, artificial
intelligence and physics (for an accessible exposition on this topic, see Chapter 2 of
Hertz, Krogh, & Palmer, 1991).

Content-addressable associative memory networks® have well-understood
properties that can be leveraged to understand their representational competencies and
dynamics. First, they have a capacity, «, for storing patterns of inputs. Beyond this
capacity, patterns start to interfere with one another. The attractors for patterns are
stable end-states (fixed-points, ground-states) that summarize where such systems end
up given an initial state vector (i.e., input to the system). These can be characterized
as having a depth and an ability to deal with noise and damage (Hertz et al., 1991).
They come in a variety of flavors to accommodate different assumptions about nodes
(e.g., leaky, integrate-and-fire), activation functions (stochastic, deterministic) and

3 We will use the terms attractor networks and attractor neural networks interchangeably with
content-addressable associative memory networks.



STRUCTURE AND DYNAMICS OF ATTITUDES 6

other properties of the system (e.g., pseudo-inverse methods for increasing capacity). 4
In short, attractor neural networks have a rich history in computational neuroscience,
cognitive science, artificial intelligence and physics of different varieties and come with
clear, understandable results.

The technical details of CANAE implementation are as follows:

o There is a graph G = G(V, E) consisting of a collection of beliefs (vertices from a
set V') and relations between them (weighted edges from a set F).

o The state of vertex ¢ € V' is x; € K; where K; is the state set for that vertex.
 For all i we have K; € {—1,1}.
o The system state is © = (x1, 22, ..., T,).

o The system global energy H is defined using all i € V' by
H(z) = —[Xica Xjeng(i) Titi + wijrir;] where Ng(i) C Vs the set of neighbors of
i in G, not including i, w;; is the weight of the edge {j, ¢} and 7; is the baseline
parameter for vertex i (we use §; interchangeably with 7; throughout the text).
Assume that w;; = wj;.

o ForieVlet o;: I[i-, K; — R be the function defined by o;(z) = H(z) — H(x)
where x and T are configurations given the current and opposite state of vertex i,
respectively.

o For each vertex i we define its vertex function as ¢;(z) = 1/(1 + e=7(®)/*) where t
is the temperature®, a parameter of the system; this defines the probability that
at any point in time a vertex ¢ will flip to its opposite state: P(c — 0) = ¢;(x).

A typical instance of CANAE is a discrete-time, asynchronous simulation. For
each time step: (i) select a vertex i, (ii) compute P(c — 0) = ¢;(z) and (iii) use
P(c — o) directly to decide if vertex i will change its state. Another common
implementation is to draw n samples of the system state z from the Gibbs probability
distribution (the Gibbs distribution is defined by the energe H over the configuration
space (all possible states)). In our simulations below, we use a local computation for o
similar to Hopfield’s formulation (Hopfield, 1982) which replaces the following functions
in the CANEA implementation as stated above:

o For all ¢ we have K; € {0,1}.
 Define o;(z) = Y ieNg(i) Ti T Wi T;.

o The vertex function ¢;(x) defines the probability that the state of vertex i (x;)
will be equal to 1; in notation this is P(z; = 1) = ¢;(x).

4 See Gerstner, Kistler, Naud, and Paninski (2014) Chapter 17 and Trappenberg (2010) Chapter 8 for
an expansion of these topics.

5 We use t = 0.001 for Study 1 and ¢ = 0.1 for Study 2 in this article.
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Summary

We set out to verify two theoretical claims of CANAE: (i) local structural
characteristics of individual components in an attitude network drive the global
dynamics of attitude formation, and (ii) the network structure of attitude networks is
driven by the trade-off between attitudinal accuracy and attitudinal consistency; the
small-world structure serves this purpose. It is unknown whether or not these claims
are logically consistent or derivable given the formal specification of CANAE as an
Ising-like model. We will demonstrate that these two claims are, fundamentally, about
the relation between attractors and network structure. The former issue is a question of
the relation between attractor states and the relative position of nodes in the network.
The latter issue is more subtle: it refers to the relation between network topology and
its capacity in terms of the number of attractors supported by the system.

In Study 1 we will demonstrate that specific predictions made by CANAE, with a
particular data set (featured in CANAE), are too simplistic and do not characterize well
the dynamics of the system. In Study 2 we will use attractor network capacity to test
the claim that a small-world network structure provides the right trade-off between the
system’s consistency and its accuracy. The small-world topology as specified by
CANAE, provides a high degree of consistency but at the expense of capacity of the
system (i.e., the number of attractors it will support). Discussion will follow.

Study 1

This study examined a set of theoretic predictions central to CANAE, predictions
that typify how the psychological network literature interprets the relation between
static psychological network properties and the dynamics of the associated systems®. To
begin, we will look at the debut CANAE article (Dalege et al., 2016) which provided an
estimate of an attitude network in reference to the U.S. 1984 presidential candidate
Ronald Reagan using the American National Election Study (ANES) of 1984 (see
Figure 2, right-panel in Dalege et al., 2016). Their predictions, using these data,
emphasized node attributes:

How a given node is connected in the network will influence whether and
how change in this node will spread to other nodes. (Dalege et al., 2016, p.
10, paragraph 7)

More specifically, two network attributes of a node were singled out as important:
membership in a cluster and node centrality. Two sets of nodes in the ANES-Reagan
data were accompanied by exemplary node-level predictions: the nodes representing
Reagan as setting a good example and whether he cares about his constituents, each of
which is shown in respective order in the following two quotes:

Thus, whether change in the negative affect cluster would spread through
the network would depend on whether you change your mind that Ronald
Reagan sets a good example. (Dalege et al., 2016, p. 11, paragraph 3)

6 The network approach or network analysis approach in psychology is somewhat ill-defined (see
Bringmann & Eronen, 2018); it usually, however, implies a certain perspective (e.g., vertices/nodes on
a graph/network can affect other vertices via edges/weights) and set of methods (e.g., computation of
network measures reflecting topology) that, taken as a whole are less ambiguous.
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and,

For example, the evaluative reaction with both the highest degree and
highest closeness in the network of the attitude toward Ronald Reagan is the
judgment of whether he cares about people like oneself. It is thus likely that

. change in this judgement would affect the attitude network to a large
extent. (Dalege et al., 2016, p. 11, paragraph 5)

These predictions refer to the consequence or extent of effect of the perturbation
of single, individual nodes. The CANAE prediction, in its basic form, is that a node’s
centrality and its cluster membership will relate to its extent of effect. Such a result
would lend support to viability of using static network structure properties to infer
something about the dynamics of a content-addressable associative memory system.
This notion is part of the CANAE canon (Chambon et al., 2022; Dalege, Borsboom, van
Harreveld, & van der Maas, 2017; Dalege, Borsboom, van Harreveld, Waldorp, &
van der Maas, 2017; Zwicker et al., 2020).

We posit the following criteria for testing this yet untested, general hypothesis: (i)
the test must invoke key aspects of the Ising model, either via numerical simulation or
mathematical analysis, (ii) the definition of extent of effect should reflect the notion of
perturbation, and (iv) the definition of extent of effect should be in relation to the likely
attractors or fixed-points of the system. These criteria offer a fair minimum set for
testing this hypothesis.

To date, the work on CANAE that follows most closely to these criteria is in
Dalege, Borsboom, van Harreveld, and van der Maas (2017). The principal result was a
difference in the sum score, defined as ¥;x; (see Introduction for definition of z;; this is
a system-level state of all vertices), between two conditions—one condition perturbed the
most central vertex by forcing its 7; to a value of 1; the other condition did the same for
the least central vertex. The difference in sum score was approximately 2 points; the
mean of 1.18 (SD= 7.99) for most central vertex and a mean value of -1.04 (SD = 7.84)
for the least central vertex. The operational range in sum score in this demonstration
was on the order of 21 points (integer values from -10 to 10).

The use of sum scores as the point of comparison doesn’t reveal much about the
extent of effect a vertex has on the system when perturbed. Of far greater value would
be understanding the extent of effect in respect to the attractors of the system,
something that was knowable given the small size of the system studied by (Dalege,
Borsboom, van Harreveld, & van der Maas, 2017)7. In short, we don’t have a
meaningful way to interpret the difference in sum scores without more knowledge of the
system’s characteristics in terms of stable attractor states.

The simulation code and the links to the original empirical data are available in
the supplemental information associated with Dalege, Borsboom, van Harreveld, and
van der Maas (2017). These data were a subset of the 2012 American National Election
Survey consisting of 10 questions about the presidential candidate Barack Obama. Two
vertices (items) were identified to be the most influential in terms of their extent of
effect. These were in reference to Barack Obama’s honesty and leadership qualities:

That the node Led[ership] is closely connected to all communities also
explains why it is the node with the highest closeness. Change in this node is

" The system under study in (Dalege, Borsboom, van Harreveld, & van der Maas, 2017) was composed
of 10 vertices; thus, the number of unique system states was 1024
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thus likely to affect large parts of the network. Hns[honesty] has the highest
strength because it has strong connections to ...[other nodes|. Change in the
node Hnslhonesty| would thus strongly affect many other nodes. (Dalege,
Borsboom, van Harreveld, & van der Maas, 2017, p. 532, paragraph 3)

Using the code provided by the authors (Dalege, Borsboom, van Harreveld, & van der
Maas, 2017), we expanded their study by perturbing each of the remaining eight
vertices (they perturbed two of 10) as a kind of prelude to Study 1. We added a more
informative measure (Wasserstein distance) and showed the distributions of sum scores
(in addition to the mean) across all 10 vertices in comparison to the baseline condition
used in their study.

Figure 1 shows the distributions of sum scores for each perturbation condition.
We see two gross features: (i) the baseline condition in Dalege, Borsboom, van
Harreveld, and van der Maas (2017) reveals one very frequent attractor (when all vertex
states x;’s were -1), and (ii) the 10 perturbation conditions are very similar in their
distributions of sum scores. Included in each panel of Figure 1 are the Wasserstein
distance (of the perturbation distribution compared to the baseline distribution) and
the mean of the sum scores.

The original article also provided code for computing the centrality of each vertex.
Using this information Figure 2 illustrates the relation between vertex centrality and
extent of effect (provisionally defined by the mean sum score or by the Wasserstein
distance between the perturbation distribution of sum scores and the baseline
distribution). The manifest feature of this figure is that there is very little variation in
extent of effect across vertices, a pattern that matches the distributions shown in Figure
1; further, no clear relation is exhibited between vertex centrality and extent of effect.

Our detailed analysis of Dalege, Borsboom, van Harreveld, and van der Maas
(2017) serves three purposes. First, it provides a synopsis of the most relevant prior
CANAE work on the problem of understanding the effects of perturbation of vertices
and the extent of effect of such perturbation on attitude networks. Second, it highlights
the general method we employed in Study 1: define extent of effect of perturbations of
vertices (we do it in a rigorous manner below) and look at the relation between extend
of effect and the centrality of vertices. Third, it offers a preliminary result: the extent of
effect may not be related to the centrality of vertices.

Other work in the CANAE canon, both empirical and simulation based, did not
meet our criteria for testing the hypothesis in question. Of the studies that directly
addressed the extent of effect of perturbation, some were correlational and thus did not
offer the control required for a perturbation study (Chambon et al., 2022; Dalege,
Borsboom, van Harreveld, Waldorp, & van der Maas, 2017; Zwicker et al., 2020). Of
these, one included simulation but did not sufficiently represent our criteria because it
lacked perturbation methods (Dalege, Borsboom, van Harreveld, Waldorp, & van der
Maas, 2017). Some work in the CANAE canon addressed other important issues, but
did not broach the topic of vertex perturbation and extent of effect (e.g., Dalege et al.,
2018, 2019; Dalege & van der Maas, 2020).

Now we move to the principal work of Study 1. The objective of this study was to
demonstrate, with a detailed example, a rigorous method for testing the CANAE
hypothesis of the relation between vertex centrality and extent of effect using the
original predictions and original data from Dalege et al. (2016). The use of a realistic
attitude network, derived from empirical data using the method prescribed by CANAE
makes up for a lack of generality (something we address in the General Discussion) with
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a degree of relevance and complexity. Keep in mind that Study 1 is telling a story from
a related but different technical perspective than that used in the CANAE literature; it
is focused on stable system states (attractors) and how perturbation might affect said
states; it is also quite detailed. We are convinced that the hypothesis and its
demonstration require such detail for full understanding. The language, thus, may seem
foreign to readers versed in CANAE.

The method was simple in principle.® First, we derived a referent set of attractors
for the system—those that reflect the distribution of natural states of the system.
Second, we perturbed the system to test the degree to which the perturbation generated
change in comparison to the distribution of the referent attractors. The method of
perturbation, described in detail next (simulation Sets 1 and 2), fixed the states of
individual nodes, one at a time, throughout the full time-course of a simulation. Third,
for each node, we computed a summary measure of its extent of effect as the difference
between the referent and perturbation distributions. From this summary measure, we
could see the relation between the node-level network properties (centrality and cluster
membership) and the node-level summary measure of extent of effect.

Prior to our simulation results, we can provide a preliminary and coarse-grained
prediction based on the analytic results of a simple case: the stability analysis of an
asynchronous Hopfield model with only one attractor state &; (one stored pattern) in
which the thresholds 6; = 0, the states € {—1, 1}, w; ; restricted to € {—1,1} and the
sign function is used for the node state dynamics®. Borrowing from Hertz et al. (1991),
we know that if the initial state S; is equivalent to the attractor state, S; = &;, then the
system will likely not change. Further, if more than 1/2 of the nodes are correct,
meaning more than 1/2 of S; = &;, then the system will likely settle to & as the system
will correct the incorrect bits in S;. In reference to the Dalege et al. case, flipping one
bit from S; would have near zero effect on the other nodes if the system was in or near
its attractor state &. Finally, notice that flipping only one bit (from state &;) would
nearly guarantee, if you let the system evolve, that the bit would flip back to its original
state the next time it was updated with probability 1 and, since no other bits would
change, the system would settle to &;. It is also true that if nearly 1/2 (or greater) of
the bits were different from &;, then the flipping of one bit £ would likely have an effect.
Notice that the latter case is the only case that predicts perturbing one node would
make a difference in the system state.

What can we learn from this simple analytic case? The effect of flipping a bit
depends on the state of the system. In this simple case, when the system is in or near
its attractor, flipping a bit will have a near zero extent of effect. In fact, the system
must be far from its attractor for the flip of one bit to have an effect.

Simulations (Set 1 and Set 2) used the dynamic network as described in the
Introduction (we will use the term Hopfield network for our model henceforth). For
both sets of simulations the weights w;; and baselines 7; of our Hopfield network were
fixed to those provided in the ANES-Reagan network used in the original article
(Dalege et al., 2016). We manipulated the initial conditions (i.e., the initial state
vector), any perturbation constraints (e.g., fixing a node’s state to specific values) and
the temperature. We will borrow the term “evaluative reactions” from the original
article to mean nodes in the network.

8 We will use the terms node and vertex interchangeably.

9 For this simple case we borrow notation from (Hertz et al., 1991)
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In both sets of simulations, each of the 22 evaluate reaction nodes was perturbed
separately, generating a node-specific subset of simulations in which the state of the
node was fixed to “on” (state = 1) for the entire simulation period. Set I differed from
Set 2 only in terms of how we constructed the initial conditions. For Set 1, each node
was tested across all possible combinations of states as initial conditions (222 initial
conditions). Thus, each node was tested in 4,194,304 simulations; this resulted in
92,274,688 (22 x 4,194, 304) simulations in total for Set 1. In Set 2 we tested the effects
of a single node under the conditions of defining the remaining elements of the initial
condition state vector as all zero. For Set 2 we ran 1,000 replicates per each node; this
resulted in 22,000 (22 x 1000) simulations in total for Set 2. Although Set 1 and Set 2
were similar in terms of methodology, the former focused on the degree to which
sustained input from the node affected the system across the full set of possible initial
conditions while the latter emphasized the degree to which sustained input from a
single node could push the system’s dynamics from the zero attractor state.

We recovered the system’s referent attractors using our Hopfield network. We
fixed the temperature to a very low value and ran all possible combinations of states as
initial conditions (2?2 initial conditions)!®. In short, we ran 4,194,304 simulations, each
representing a unique state vector as the initial condition and for 2000 discrete
simulation time-steps. The results revealed 15 attractors, shown in Figure 3. The
relative frequency of each attractor, in reference to its Hamming distance from the most
frequent attractor, is provided in Figure 4; Figure 5 provides the same for energy. From
these results we can summarize the system under a low temperature condition as having
a single low-energy and highly frequent attractor with another set of three somewhat
frequent attractors, one of which is close in energy and in distance to the primary
attractor. The other two attractors are more distant and higher in energy from the
most frequent attractor and close to one another in both energy and Hamming distance.
The remaining 11 referent attractors are infrequent.

Figure 3 reveals some interesting features of this system (labels of attractors are
provided in decimal values for the binary values of the state vectors): (i) the most
frequent (4194218) and the second most frequent (85) attractors were full complements,
(ii) attractor 85 was composed of only and all the negative valence nodes in the system,
(iii) the third and fourth most frequent attractors (139349 and 4191598, respectively)
were mixtures of the first two most frequent. The attractors of the system are
well-structured and should serve well as a baseline for the perturbation analysis.

Our main results relied on, for each node separately, a comparison between the
distribution of attractors under perturbation to the distribution of referent attractors,
what we dubbed consequence or extent of effect of the perturbation. Formally, we
defined the node k extent of effect, Ej, in the following way. First we define dist, (r for
referent) as the discrete categorical frequency distribution of the 15 referent attractors.
Let us treat dist, as a vector and r = dist,/||dist,|| to be its Euclidean normed vector.
Then, the node k extent of the effect Ej = ||r — s|| where s is the normed vector of a
comparable frequency distribution!! generated by the set of perturbation simulations
for the node in question.

The measure E), captures the Euclidean distance between the referent distribution
and the node specific distribution, the latter generated via perturbation. However, it is

10 We compared the simulations presented here with a higher temperature and found similar results.

1 By comparable we mean the representation of the frequencies of the same 15 referent attractors.
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not guaranteed that, for any node, any of its fixed-points under perturbation will match
exactly (e.g., a Hamming Distance of 0) any of the referent fixed-points. So, we devised
a procedure for computing dist, and s the description of which is provide in Appendix
A. In the process, we introduced a measure Hj, that served as an essential quality check
on dists using Hamming Distance to gauge how similar the node specific attractors were
to the referent attractors.

In summary, for each node k£ we computed two measures: Ej was the extent of
effect on the network; Hj; was a quality check. Our primary result will show the relation
between node centrality, clustering and Fj. We use Hy as a sanity check—if it is to high,
any results found given Ej will be less convincing because the node specific attractors
would not be similar to the referent attractors.

Before we look at the primary result it will be informative to compare the referent
attractor distribution (dist,) and the perturbation distributions for each node k (disty).
Figures 6 and 7 show this comparison for simulations Set 1 and Set 2 respectively. In
general, for simulation Set 1, there was reasonable alignment for all nodes in respect to
the referent fixed-point distribution, with some clear and systematic differences: (i)
perturbation in the negative cluster nodes generally aligned better than the most central
node, forced a reduction in the frequency of the most frequent referent fixed-point
(4194218), and boosted slightly the frequency of the second most frequent referent
fixed-point (85), (ii) perturbation in the most central node forced a reduction in referent
fixed-point 85 and boosted fixed-point 4194218, (iii) perturbation of some nodes, aside
from both the most central and those from the negative cluster, resulted in very high
frequency for the most frequent attractor. For simulation Set 2 the patterning was
different: (i) perturbation of the most central node was the only node that shows
substantial frequency for the most frequent referent attractor (4194218), but most of its
frequency matched attractor 85, an attractor that does not contain the perturbed node
itself; (ii) perturbation of the negative cluster nodes drive the system to referent
attractor 85; (iii) perturbation of some of the other nodes result in high frequency of the
referent attractor 85, even though these nodes are not part of that attractor.

In this preliminary comparison, simulation Set 1 suggests that perturbing the
network across all possible initial states does not have much of a effect on the
distribution of attractors while simulation Set 2 shows that many of the perturbations
settle into fixed-point 85. The latter result indicates that under low energy initial
conditions (just one initial node state = 1), the fixed-point 85 is the main attractor,
probably attributed to the fact that three of the four nodes that define this attractor
had the largest baseline values (a stronger push to be “on”; > 1.4 standard deviations
above the average)'?.

We now move to the primary result of Study 1-to understand the extent of effect
on the system of central and negative clustered nodes as hypothesized in the original
CAN article. The summary measure Fj, provides a direct understanding of how
perturbations of nodes along the spectrum of centrality and clustering affect the system
in comparison to the referent fixed-points. Figures 8 and 9 show the relation between
node centrality and Fj for simulations Set 1 and Set 2 respectively and provide tags for
the negative cluster nodes. The picture is clear for both sets of simulations: There is
little relation between centrality or negative cluster membership and Ej. Set 1 differs
from Set 2 in two ways. First, the perturbations in simulation Set 2 had a much larger

12 Baseline values of nodes capture the probability of the node state = 1 sans input from other nodes.
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effect on E) on the whole compared to Set 1. Second, the most central node was more
unique (compared to the other nodes) in its value of Ej, for simulation Set 2 but not for
Set 1; it was closer to the referent distribution, something that can be seen in the
distribution shown in Figure 7 for the most central node.

Figures 10 and 11 show the relation between node centrality, negative cluster
membership and Hj, for simulations Set 1 and Set 2 respectively. We show this to
provide evidence that the measure E}, was based on reasonably small Hamming
distances. (For Set I the Hamming statistics were: mean=0.06, std=0.07, min=0,
max=0.34; for Set 2: mean=0.64, std=0.36, min=0, max=1.49).

In summary, the primary results using Fj as a summary measure of the extent of
effect of a node was that neither node centrality nor membership in the negative cluster
were related to Fjy. Our claim should be considered in the context of the patterns of the
distributions dists in Set 1 and Set 2 where we did see some systematic effects, albeit
small, when perturbing the most central node or those with membership in the negative
valence cluster.

Transparency and Openness

In reference to the empirical data used in Study 1, as per our objective of testing
the CANAE model predictions as given in (Dalege et al., 2016), the sample size, any
data exclusions and construction of the attitude network were identical to those used in
the study and were, thus, not in our control. All simulation and analysis code (and
instructions for generation of the original data as used in the target article (Dalege et
al., 2016)) are provided at
https://github.com/mark-orr/Causal__Attitude_Network Model Comment. All
analysis and simulations were conducted within a conda virtural environment. The
original data is easily obtainable by anyone once completing a simple registration
process on the data holders web portal. The specification file for this conda
environment is included in this Github repository for reproduction of the environment.
This study’s design and its analysis were not pre-registered.

Discussion: Study 1

Study 1 did not support the general CANAE assertion that a node’s extent of
effect when perturbed was directly related to its centrality or cluster membership.
Neither node centrality nor cluster membership was related to nodes’ extent of effect on
the system. We did see minor, systematic and reasonable system-level effects on the
distribution of the perturbed states, especially in simulation Set 2, but these were driven
by the high probability of ending up in attractor 85 when starting very near the zero
attractor, not by an extensive effect on the system. It seems that the viability of using
static network structure to infer system dynamics, at least in this specific case, is low.

Study 1, as a case study, doesn’t readily offer generality. We claim, however, that
it does offer a general lesson, one that could and should be minded when studying
psychological networks. Predictions of system-level dynamics should respect the nature
of the system, and when possible, leverage existing results and methods for
understanding the system-level dynamics. Recent work on the issues surrounding
interventions based on static network properties in clinical psychology (e.g. Bringmann,
2021; Bringmann et al., 2019; Haslbeck et al., 2021) makes a related claim. The
overarching issue in the use of psychological networks in clinical psychology lies in a
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lack of scientific understanding—we don’t yet know enough about the inter-nodal causal
processes in clinical psychology to construct formal models of the relevant system
processes and thus cannot properly study their dynamics (Bringmann, 2021; Bringmann
et al., 2019).

Notice that this limitation does not apply to attitude networks—in both the
CANAE model and other prior work with neural networks (Conrey & Smith, 2007;
Monroe & Read, 2008; M. G. Orr et al., 2013) the system is specified completely and to
a degree that readily affords simulation or analytic results. Yet, the predictions put
forth in the CANAE canon (Chambon et al., 2022; Dalege et al., 2016; Dalege,
Borsboom, van Harreveld, & van der Maas, 2017; Dalege, Borsboom, van Harreveld,
Waldorp, & van der Maas, 2017; Zwicker et al., 2020) were largely divorced from the
theory of Ising-like systems, theory that provides not just results and methods but,
more importantly, how to think about the class of problems. We offer a quote from a
classic work in Ising-like systems (Hertz et al., 1991):

.. we are usually not satisfied with simply stating or deducing a given
result, but instead try to show the reader how to think about it, how to
handle and hold it. (Hertz et al., 1991, p. XX, paragraph 2)

Our results were very basic, yet illustrative of the possible analytic and synthetic
approaches available in the dynamical systems literature used to address questions of
network structure and system dynamics (see H. Mortveit & Reidys, 2007, for a detailed
introduction). To emphasize this point, we offer an extension of the stability analysis
we provided in the beginning of Study 1 (based on (Hertz et al., 1991)) which predicted
that perturbing a single node will likely not have a strong extent of effect on the network
dynamics, a prediction generated from a highly simplified case. The simulations in
Study 1 were more complex in terms of the process dynamics defined at the node-level
and in the set of weights w;; and baseline parameters 7; (in place of thresholds ¢;) which
reflected real-world, correlated data. This notwithstanding, we can use a similar
analysis to understand the relation between fixing a node and its extent of effect on the
system. Notice that fixing the state of node k, xy, for all time-steps of a simulation, as
we did in simulations Set I and Set 2, is nearly equivalent to a simulation in which all
nodes but k are present and a constant C; (to stand in for node k) captures the effect of
node k on the state z; of each node i (C; is the vector of constants {i = 1,...,(n — 1)}
where n is number of nodes in the network and each value is equal to w;zz). Then,
using this system, the question of the extent of effect of a node is reformulated!®: Are
the attractors of the system different with or without C;? We can address this question
using an approach similar to the highly simplified case used at the beginning of Study 1.

From the Introduction, we can see that for any node 4, the input o;(x) would now
be 0i(x) = X jeng ) Ti + wiir; + C;. We can then generate from the original CANAE
article ANES data (Dalege et al., 2016) the parameters to make a first approximation of
the process dynamics of the average node using the expected values were Efw;;] = 0.19,
Elzj] = 0.61, E[r;] = —1.92 and E[C;] = E[w;;]. This formulation allows for a simple
comparison of o;(z) with and without C; which were 5.86 and 6.47, respectively. Both
of these values when plugged into the node update rule ¢;(x) are approximately one.
That is, under average conditions, with and without C; the probability P; that any node

13 This reformulation is not fully equivalent to simply fixing k versus not fixing k& because the latter
does not necessarily mean that £ = 0; we use this example as an illustrative simplification.
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state z; will be “on” (in state {1}) is one. Thus, flipping a single node “on” or “off” will
have little chance of having an effect on the network, ceteris paribus, when conditions
are typical. Notice that this preliminary result accords with the frequencies of the most
frequent referent attractor in the system (see Figure 6) where most z; = 1.

The point of this analytic exercise is to bring clarity to the problem of whether
fixing a node in this system will likely have an extensive effect. Stability analysis, in its
analytic form, is one fruitful way to think of the problem because it captures the
node-level dynamics, but leaves out the details of the network structure 4. Simulations
Set 1 and Set 2 capture both the node-dynamics and the network structure. Taken
together, these results emphasize that such questions benefit when accounting for all of
the key properties of the system, something that the work in the CANAE canon that
relates to extent of effect (Chambon et al., 2022; Dalege et al., 2016; Dalege, Borsboom,
van Harreveld, & van der Maas, 2017; Dalege, Borsboom, van Harreveld, Waldorp, &
van der Maas, 2017; Zwicker et al., 2020) does not incorporate. CANAE asserts that
attitudes are an Ising-like systems but does not take into consideration the formal
meaning of this class of system in its analysis of extent of effect.

Study 2

The CANAE model makes a unique theoretical assertion: attitude networks
conform to a small-world network topology. In the authors’ words:

In the CAN model, the structure of attitude networks is held to conform to
a small-world structure (e.g., Watts and Strogatz, 1998): Evaluative
reactions that are similar to each other form tight clusters, which are
connected by a sparser set of “shortcuts” between them. (Dalege et al.,
2016, p. 3, paragraph 4 )

This structure results from a need to satisfy a trade-off between consistency and
accuracy. In the authors’ words:

Attitude networks are driven by the trade-off between optimization (i.e.,
consistency between evaluative reactions) and accuracy. This trade-off
results in a small-world structure, in which evaluative reactions, that are
similar to each other, tend to cluster. (Dalege et al., 2016, p. 14, paragraph
7)

Consistency is driven by a patterning of excitatory and inhibitory weights in the
network:

To acquire a consistent state, evaluative reactions of the same valence
generally have excitatory influence between them and evaluative reactions of
different valence generally have inhibitory influence between them. (Dalege
et al., 2016, p. 6, paragraph 3)

And, accuracy is afforded by both clustering and the sparsity of small-world connections
between clusters, the combination of which are key structures inherent in the
small-world topology:

14 This analysis was at the level of individual nodes; it doesn’t directly tell us how this might cascade
without further and detailed analysis (see Chapter 2, section 2.5 of Hertz et al. (1991)).
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Clustering allows for energy reduction within clusters (e.g., all evaluative
reactions toward a person that pertain to the dimension of warmth are
highly aligned) but also allows for accuracy by having unaligned or even
misaligned clusters that do not cost much energy (e.g., the evaluative
reactions that pertain to the dimension of warmth are not highly aligned to
the evaluative reactions that pertain to the dimension of competence).
(Dalege et al., 2016, p. 6, paragraph 4)

In summary, the small-world structure is hypothesized to support the drive for the
trade-off between consistency and accuracy by virtue of a particular configuration of
weights: a dense network of excitatory/positive weights among similar evaluative
reactions and a sparse network of inhibitory/negative weights between non-similar
evaluative reactions. The small-world topology, combined with the prescribed pattern of
excitatory and inhibitory edges, is hypothesized to be the sweet-spot in terms of the
supposed trade-off. This intriguing theoretical hypothesis had been neither empirically
tested nor formally verified, yet it persists in the CANAE canon (e.g., see Zwicker et
al., 2020).

It is difficult to evaluate whether the small-world supports the hypothesized
consistency /accuracy trade-off because, although consistency was defined
unambiguously (as energy), accuracy was not. This study attempts to bring clarity to
this issue. We start with the notion of accuracy.

In the CANAE model, accuracy was invoked to account for the possibility of
non-aligned clusters emerging through the sustained process of learning about and
experience with an attitude object. This would, presumably, pressure the network to
represent dissimilar clusters of evaluative reactions that reflect different
dimensions/aspects of an attitude object (most likely valence, but other dimensions
might be candidates). Thus, the CAN notion of accuracy refers to the capability of the
system to afford the representation of multiple non-similar or unaligned clusters.
Simply put, it reflects the world as it is, typically.

This description of accuracy, however, is incomplete. It does not distinguish
between a system with one dominant attractor that represents unaligned clusters
simultaneously and a system with a set of attractors each member of which represents
an aligned cluster. By definition, the latter case is non-simultaneous because an
attractor is a fixed-point of the system. Introducing the notion of simultaneity implies
two categorically different kinds of accuracy, an important distinction because each kind
imposes its own requirements on the system. Simultaneous accuracy requires that the
system has a stable state in which all evaluative reactions are endorsed.
Non-simultaneous accuracy, assuming there exist unaligned clusters, requires at least
two attractors that discriminate between them to some degree. This issue has not been
addressed in the CANAE canon (e.g., Dalege et al., 2016; Zwicker et al., 2020), its
importance, as we will demonstrate, notwithstanding.

The distinction between simultaneous and non-simultaneous accuracy is
unnecessarily burdensome in its complexity. A simpler notion that serves equally well in
this context is capacity. In the Hopfield model, capacity reflects the number of
attractors stored in a system!®. So, instead of evaluating whether the small-world
network structure satisfies a consistency/accuracy trade-off, we can ask: What is the

15 See Hertz et al. (1991) for precise, formal treatment of capacity in Hopfield models. Our use of the
term is less formal; we define it to only mean the number of attractors supported by the system.
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capacity of a small-world CAN model? Does the capacity differ in comparison to more
regular or random networks? And, how do capacity and consistency relate?

We begin addressing these questions by way of a simple demonstration, one that
was inspired by a canonical neural network model: the Necker cube visual illusion
(Rumelhart, Smolensky, McClelland, & Hinton, 1986). The Necker cube has two kinds
of attractors. One kind attractor represents activation of either one or another cluster
of nodes as “on” which we dub, borrowing from the Necker cube model, left- or
right-facing. The other kind attractor is defined when both clusters are “on”
simultaneously; in terms of the Necker cube, both clusters “on” is an “impossible”
representation of the cube. The mapping to accuracy, as discussed above, is
straightforward if we assume that the clusters are misaligned: a system that exhibits
attractors for the left- or right-facing state shows non-simultaneous accuracy (capacity
> 1); a system that settles to the the “impossible” interpretation, in which both clusters
are active simultaneously, reflects simultaneous accuracy (capacity of one). Next, we
demonstrate that the network structure dictates the capacity it affords.

We simulated a pseudo-Necker cube using the same Hopfield model as used in
Study 1 but with 8 nodes, 7; values of zero, and symmetric weights € {—1,1}. Figure
12 shows the basis for four different Hopfield simulation sets (Set A - D) each defined
by one of four configurations of 12 weights (labeled A - D in Figure 12). Across
simulation sets, we systematically increased the proportion of negative edges, which
only connected the two clusters (Panel A shows the two clusters clearly.) We ran 100
simulations for each combination of the weight configuration and three initial state
vectors (for the latter we used random with p(z; = 1) = 0.50, all ones, and all zeros)
and computed the measures shown in Table 1.

The manipulation of the dependent variables (proportion impossible and mean
energy) is represented by the proportion of negative edges in Table 1 and by the
graphical depiction in Figure 10. Set A had zero negative edges and thus, no
connections between the two clusters. Moving from Sets B to D, we increased the
number of negative edges by two. These negative edges were constructed so that all
nodes always had the same degree (number of connections).

The first result was that the proportion of runs that yeilded the impossible
attractor dropped dramatically from one for Set B to close to zero for Set C and D. In
sum, Sets A and B settled on the impossible attractor and Sets B and C largely settled
on either the left- or right-facing attractor. The second result was that mean energy
increased nearly linearly with the proportion of negative edges in the network.

In this demonstration, we show that the essential structure generated by the
hypothetical CAN learning mechanism—dense clusters of nodes connected by
positive/excitatory weights in conjunction with sparse, between-cluster negative
weights-resulted in one attractor state, albeit it at a low energy. When the clustering is
broken, the system yielded two complimentary attractors (likely driven by
between-cluster inhibition), but with comparatively higher energy.

Given this demonstration we can revisit the trade-off between consistency and
capacity and guess where the CANAE model sits in respect to it. Set B seems, to a first
approximation, most like what the CANAE model proposes. It has sparse inhibitory
connections, is relatively low in energy and high in consistency, and represents both
clusters simultaneously. Further, we suggest that Sets C and D do not satisfy the CAN
trade-off because the energies are relatively high.

In our demonstration, consistency was inversely related to capacity. To increase
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consistency, you must trade-off the systems capacity. The hypothesized trade-off (per
Dalege et al., 2016), if we must have one, is not between consistency and accuracy but
between consistency and capacity. The CANAE model trade-off is where we have
high-consistency and low-capacity. In reference to the CANAE notion of accuracy
(Dalege et al., 2016), it seems that it is of the simultaneous kind.

Simulations Set 8 and Set 4 put these intuitions to the test in the context of the
formal specification of the small-world graph generating algorithm as defined by Watts
and Strogatz (1998); these are a direct extension of the pseudo-Necker cube
demonstration but at a much larger scale, one that captures better the formal graph
properties of the small-world phenomena.

Each simulation set ran a set of Hopfield models (same general specifications as in
Study 1) each with 1000 nodes, 7; values of zero, states € {0, 1}, symmetric weights
€ {—1,1}. The only difference between simulation Set 3 and Set 4 was the initial state
vector; for Set 3 it was ones and for Set 4 it was random (defined in the same was as
for the pseudo-Necker cube demonstration). The graph for each Hopfield model was
generated using the Watts-Strogatz algorithm (Watts & Strogatz, 1998). The rewire
parameter r (the probability of rewiring each edge) controls the small-world regime,
defined roughly between r = 1072 to 107!, At the end-points of the rewire parameter
(no rewiring and probability of rewiring = 1), the graph is considered regular and
random, respectively, in its topology (Watts & Strogatz, 1998). In our simulations, we
used an extension of the small-world rewiring algorithm such that all rewired edges are
negative and all non-rewired edges are positive. In effect, this means initializing with a
regular (ring-lattice) graph g with k& = x (x is the number of neighbors for each node)
and all positively weighted edges. Then assign -1 to any edge that is rewired.

The point of this rewiring scheme was to capture the core notion of the CANAE
model network topology. In the small-world generating algorithm, rewired edges are
considered as bridges between clusters. By asserting that they are negative, we capture
the CAN notion of inhibition between clusters. This was analogous to the method we
used for the pseudo-Necker cube demonstration.

Both simulation sets spanned the ordered set R =
{0,0.001, 0.005,0.01, 0.05,0.10, 0.20, 0.40, 0.60, 1} where each value reflected the rewire
parameter in the Watts-Strogatz small-world model (Watts & Strogatz, 1998). For each
simulation set, we ran 10 replicates of the Hopfield model for each value of R 6. This
generated 100 simulations per simulation set. The idea, just as in the pseudo-Necker
cube demonstration, was to understand the relation between consistency (as energy)
and capacity of the network within and outside of the small-world regime
(approximately an 7 value between 1072 and 1071). The predictions for our simulations
come directly from the results of our pseudo-Necker cube demonstration: when the
probability rewire is in the small-world regime, the energy of the system should be
relatively low and only one attractor should be found.

Figure 13 shows the primary result for simulation Set & in terms of energy. As
predicted, the small-world regime (between rewire probability of 1072 and 107!) has
nearly the minimum energy compared to higher rewire probabilities. Figure 14 shows
the primary result in terms of capacity. Here, we see the attractors for all of the Set 3
simulations, annotated by the value of the rewire parameter r. The system is stable, in

16 A replicate was defined as one graph generation using the small-world algorithm; thus, the 10
replicates were likely not identical graphs.
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respect to its initial state x until » > 0.20. After this point, the system exhibits
multiple attractors across replicates.

Figures 15 and 16 show the results for simulation Set 4. The results show a close
correspondence with those from simulation Set & even given a random initial state
vector.

For both simulation sets, in the small-world regime, the dynamic was driven by a
preponderance of positive, excitatory weights within clusters and a small fraction of
negative, inhibitory weights across clusters, a structure that yields little inhibition
between clusters of evaluative reactions that are not similar. The effect was that all
clusters eventually became active, due to the combination of mutual reinforcement
within clusters (from the excitatory/positive weights) and the stochastic nature of the
node dynamics (each node, even without input, will change states with some
probability). This was the case for both initial conditions as was demonstrated by the
similarity of results between simulation sets Set 3 and Set 4.

In sum, the predictions of the pseudo-Necker cube demonstration extended to
these two simulations. In the small world regime, the system had relatively low energy
and a capacity of one.

Transparency and Openness

The data in this study were completely synthetic and theoretical. Thus issues of
sample size, any data exclusions and construction of constructs were not in relation to
human data but in accord with reasonable practices in simulation and analysis of
theoretical dynamical systems. All simulation and analysis code (and instructions for
generation of the necessary data are provided at
https://github.com/mark-orr/Causal__Attitude_ Network Model Comment. All
analysis and simulations were conducted within a conda virtural environment. The
specification file for this conda environment is included in this Github repository for
reproduction of the environment. This study’s design and its analysis were not
pre-registered.

Discussion: Study 2

By the CANAE model, the drive or need of attitudinal systems to reach a
trade-off between consistency and accuracy is axiomatic (Dalege et al., 2016). Our issue
is not with this axiom but with the lack of clarity in the definition of accuracy. This
made it difficult to evaluate the claim that the small-world topology, with the right
patterning of excitatory and inhibitory weights, supports the trade-off.

Upon analysis of the issue, we found it more natural to state the trade-off in terms
of capacity. Networks with excitatory, dense clusters that inhibit one another with
sparse networks exhibited high consistency but have a capacity of only one; increases in
capacity reduce consistency. This pattern was clearly demonstrated in the
pseudo-Necker cube simulation and simulation Sets 3 and 4. If there is a trade-off in
relation to the CANAE model, it is between consistency and capacity.

From multiple disciplinary perspectives (e.g,. neural networks, neuroscience,
machine learning, and cognitive science) the behavior of the small-world CANAE is
unusual. Its representational function is, by virtue of the small-world assertion, to store
one attractor in which all features it has learned about an attitude object are activated
in all contexts. It does this using a specific network structure—one that essentially
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minimizes the inhibition in the network while maximizing the excitation—and a specific
dynamic, that of an Ising-like system. The unusual part is that, because of its low
capacity, it doesn’t leverage the useful aspects of content-addressable memory networks
(e.g., context sensitivity, graceful degradation). It is fair to ask: what is the purpose of
a network attitude model with Ising-like dynamics and a capacity of one? We will
address this issue further in the general discussion'”.

In summary, we see in this study a similar issue with CANAE as found in Study
1. A focus on network structure without thorough consideration of the interplay

between network structure and the dynamics of the system.

General Discussion

We will focus the general discussion on two topics. The first is theoretical: What
is the function of the CANAE system? There is enough ambiguity in the CANAE
literature about this question to render its answer somewhat opaque. The second is
practical: How should we make predictions in respect to the dynamics of psychological
networks? We will explore a different but prominent computational model of attitudes,
the Attitudes as Constraint Satisfaction (ACS) model (Monroe & Read, 2008), to
address this latter question.

What does CANAE do?

The theoretical capacity of a network of 1000 vertices is about 130 states (Hertz et
al., 1991). Within the CANAE small world regime, as shown in Study 2, the capacity of
a network of the same size was one. This limited capacity was likely due to the peculiar
weight distribution dictated by CANAE in which excitatory weights within clusters
vastly outnumbered inhibitory weights between clusters. In the Discussion of Study 2,
we raised the question: What is the purpose or function of such a limited capacity
system for the agent or person in terms of evaluation of an attitude object? In
attempting to answer this question, we took a detailed, in-depth look at the CANAE
literature. Our findings revealed something obscure in the CANAE literature. CANAE
evolved in terms of both the meaning of vertex states and the typical kind of
distribution of the network weights. In fact, CANAE split into two separate forms—a
content-addressible associative memory network and a cusp-catastrophe network—each
with unique characteristics and markedly different functions. The surfacing of these
forms provided a resonable answer to our question about CANAE’s function. It also
raised other critical issues, which we will explore after we answer our initial question.

Evolution of the Function of CANAE. CANAE can be conceptualized as a
content-addressable associative memory system (we provide such a framing in the
Introduction). In this form, CANAE asserts that the meaning of vertex states z; is
endorsement or not of the evaluative reactions they are meant to represent. The
meaning of the weights w;; is asserted as the causal influences among the set of vertices.
Inhibitory as well as excitatory weights are expected in a network for which the
evaluative reactions do not align (e.g., are of different attitudinal valences); ultimately,
it is the social context from which one learns that drives the distribution of weights.
The putative function of such a system is to store and retrieve system states that reflect

17 1f we would have used a state set K; € {—1,1} in simulation Sets 3 and 4, a reverse state would
exist that is the logical complement of the one stored attractor. Thus, when we say one attractor we
mean for it to include whatever reverse state exists.
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exposures in the social environment or through self-reflective processes. This form
captures how CANAE is described in its debut (Dalege et al., 2016).

The semantics of CANAE were altered two years later, or maybe more accurately,
another CANAE form was defined. In Dalege et al. (2018) it was suggested that
CANAE is akin to the cusp catastrope model of attitudes (Liu & Latané, 1998). In this
form, the meaning of vertex states z; was valenced:

The CAN model can easily integrate the catastrophe model of
attitudes...Thresholds in the CAN model directly relate to the valenced
information a person receives regarding an attitude object... (Dalege et al.,
2018, p. 184, paragraph 1)

The distribution of the weights was such that w;; > 0, whatever .

In 2020, follow-up work provided direct support for the relation between CANAE
and the cusp catastrophe model (see Appendix A in van der Maas, Dalege, & Waldorp,
2020). In this work, it was found via simulation that a CANAE network could exhibit
two key features of the cusp catastrophe model (Zeeman, 1977), hysteresis and pitchfork
bifurcation, under conditions with a low temperature and a distribution of weights such
that w;; > 0, whatever ¢j. The independent variable, the control variable in cusp
catastrophe terminology, was the average value of the vertex dispositions 7;; the
dependent variable was the sum score of the system (the sum of all z;). The
system-level behavior of interest was to understand when the sum scores were at a
maximum or minimum in reference to the control variable; these limiting states
represent strong positive or negative attitude respectively.

Understanding the relation between CANAE and the cusp catastrophe model
makes it easier to place other work in the CANAE canon, especially the theoretically
oriented simulation work, all of which shares characteristics of the cusp catastrophe
form—distributions of vertex baseline disposition 7; and system temperature ¢t were
explored while fixing the distribution of weights w;; so that they were virtually all
positive (Dalege et al., 2018; Dalege, Borsboom, van Harreveld, Waldorp, & van der
Maas, 2017; Dalege & van der Maas, 2020; van der Maas et al., 2020)*®. The primary
system behavior of interest in these simulation studies was the sum score.

So, it seems that the CANAE theory evolved quickly. The original form was a
content-addressable associative memory system that assumed that vertex states
represented endorsement or not of the evaluative reaction directly. Its function was to
store the states to which it was exposed and recall them when cued by social context.
The second form was a cusp catastrophe system in which the vertex states x; were to be
interpreted as the valence of the evaluative reaction directly; the principal system
measure of interest was the sum score. Its function was to represent a strong positive or
negative valenced state of the system and to demonstrate the control of the system
using the distribution of the baseline dispositions 7; over a range of values of system
temperature.

Now we can attempt a sensible answer to our question. In the small world regime
CANAE behaves as if it were a cusp catastrophe form. The distribution of the weights
were largely positive (between 99 and 90 percent) and the system-level end state we
observed was extreme: a sum score very close to 1000, equal to the number of vertices

18 For some cases this assertion is based on distributions with expected values that only approximate
the assertion of virtually all positive weights.
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in the network. It seems, then, that the small world constraint dictated by CANAE,
ceteris paribus, supports well a cusp catastrophe form of CANAE. In short, the
CANAE small-world assertion implies that the function of CANAE is to provide cusp
catatstrophe dynamics for attitude formation and change. '°

Critical Issues. Our analysis of the evolution of the CANAE theory and our
inevitable conclusion raised two questions in respect to both learning and measurement
in CANAE. Throughout the CANAE literature, learning of the network weights w;; and
vertex dispositions 7; was not addressed directly. Instead, these parameters were fixed
prior to simulation?’, with an acknowledgement that Hebbian learning might be a
fruitful path for future work (Dalege et al., 2018; van der Maas et al., 2020). As we
describe next, Hebbian learning seems reasonable for the content-addressible memory
form of CANAE but not the cusp catastrophe form. In fact, it is not clear how learning
is relevant for the cusp catastrophe form. With respect to issues of measurement, we
note that the original CANAE form was cast as a new psychometric measurement
approach:

...a realistic psychometric conceptualization of attitudes (Dalege et al., 2016,
pg. 3, para 4).

The CANAE canon subscribes to a statistical measurement model for generating
network parameters from attitudinal survey data (van Borkulo et al. (2015) IsingFit
method) for the purposes of simulation using the Ising model (Dalege et al., 2016).2!
Yet, the sole example in the CANAE literature of this measurement model applied to
Ising simulation deviates significantly from the measurement model with little
justification; this deviation has striking effects on the dynamics of the system as we will
demonstrate shortly.

Before we address the issues of learning and measurement in detail, some
observations will prove useful to keep in mind. First, both forms of CANAE are
memory systems in which the weights w;; and baseline dispositions 7; of vertices store
information about the world and that are responsive to cues for retrieval of an attitude.
Second, the model operation of both forms of CANAE are identical; they use Ising-like
or Hopfield-like dynamics. Third, the distributions of the network weights are different
across forms. The original associative memory form does not constrain the weights, but
learns them from data; the cusp catastrophe form of CANAE fixes the weights to be
virtually all positive in value. Finally, the semantics of vertex states are distinct—in the
cusp catastrophe form these represent valence directly while the original form represents
endorsement or not of a belief or evaluative reaction.

To ground our comparison, we invoke the associative memory problem, a
fundamental notion that arose from the study of neural networks in the 1980s:

19 Tn Study 2 we set the baseline dispositions 7; to zero; we conjecture that systematic changes in 7;
would provide the same functionality in Study 2 as does a control variable in the cusp catastrophe
CANAE form.

20 Dalege, Borsboom, van Harreveld, and van der Maas (2017) is an exception to this rule; we discuss it
in detail shortly.

21 There are some other statistical methods used in the CANAE literature but they do not address
simulation of the Ising-like attitude model; instead, they are used to analyze data directly (e.g., Dalege,
Borsboom, van Harreveld, Waldorp, & van der Maas, 2017; Dalege & van der Does, 2022).
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Store a set of p patterns ! in such a way that when presented with a new
pattern (;, the network responds by producing whichever one of the stored
patterns most closely resembles (;. (Hertz et al., 1991, p. 11, paragraph 1).

In this formulation, u = 1,2, ..., p represent the patterns and the vertices are represented
by i =1,2,..., N. A solution to the associative memory problem is to find the set of
weights, w;; and dispositions 7; that result in this behavior; if successful, the stored
patterns &!' represent attractors. The associative memory problem provides a useful,
clear basis for comparison of the two CANAE forms, especially in respect to learning.

The associative memory problem captures well the original CANAE form, as
exemplified by Study 1. To recapitulate, we used the IsingFit method (van Borkulo et
al., 2015) to generate Ising simulation parameters followed by the presentation of all
possible patterns (the full configuration space) to the system; this method revealed the
stored patterns in the system (we called these referent fixed-points in Study 1).
Hebbian learning, as referenced in the 2018 theoretical paper (Dalege et al., 2018),
would also have served the purpose of generating the Ising simulation parameters. In
short, the associative memory problem and the original CANAE form are well aligned.

For the cusp catastrophe form of CANAE, the associative memory problem is, in
a sense, inverted. We might state it like this: Given two desired patters &, and &
the problem is to understand the system’s behavior in respect to these two patterns via
the control variable, namely the average value of the vertex distributions 7. These two
patterns are the all negative states or all positive states such that whatever i, x; = —1
or x; = 1; they reflect extreme negative and positive attitude, respectively. The interest
is not to know which specific patterns, when presented, map to which stored attractors
but to understand the partitioning of the pattern space in respect to three regions: (i)
where T < €,,;, and the system generates &, (ii) where T > €,,4, and the system
generates & and (iii) where €,;, < T < €4, and the system yields a mixture of
system states. (The latter region is expected to be small given a low temperature.) In
sum, the associative memory problem amounts to storing two patterns in such a way
that the system is controlled by 7 to provide the right partitioning of the configuration
space. Storage, then, becomes trivial. A simple solution is to fix all weights greater or
equal to some positive value, a solution that, in practice, has support in the CANAE
literature (Dalege et al., 2018; Dalege, Borsboom, van Harreveld, Waldorp, & van der
Maas, 2017; Dalege & van der Maas, 2020; van der Maas et al., 2020).

Having such a simple solution readily at hand puts into question the suitability of
the cusp catastrophe form of CANAE as a model of attitude learning, at least in terms
of Hebbian learning. We suggest that this is a major point of exploration for future
work on CANAE. Prior work on fitting cusp catastrophe models to attitudinal data
may prove useful (see Van Der Maas, Kolstein, & Van Der Pligt, 2003) as might
advanced optimization techniques in neural networks (see Aggarwal et al., 2018; Rojas,
2013, for efforts in this direction) .

Now we move to the issue of measurement. Earlier in this section we pointed out
that the original content-addressable associative memory form of CANAE was fashioned
as an alternative measurement model for attitudinal data. The first (and only) attempt
at Ising simulation in conjunction with the CANAE measurement model departed from
the measurement model in a somewhat peculiar manner (e.g., Dalege, Borsboom, van
Harreveld, & van der Maas, 2017)??; we say peculiar because although it seems like a

22 This effort used the IsingFit method for estimation of the network, a method that was developed for
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small deviation from the measurement model, it comes with dramatic effects on the
dynamics of the network, as we will show next.

The deviation worked as follows. Prior to simulation, the network was recoded
such that the subset of the weights that connected vertices of opposite valence were
reversed in sign (valence was judged by the researcher and was not inherent in the data
or represented in the simulation). In practice, this technique had the effect of making
virtually all of the network weights positive in value, an effect that is reminiscent of the
cusp catastrophe form of CANAE.

The motivation for this technique was similar to that of recoding survey items in
order to align the interpretation of item values. The following quote is in reference to
Ising-like attitude models:

... the connections may not be all equal, they will be mostly positive (after
rescaling). That is, we conjecture that it is generally possible to define all
relevant nodes (for instance, regarding the consumption of meat) such that
all positive values represent a pro attitude and all negative values represent
a contra attitude. This is standard practice in the analysis of attitude
questionnaires. (van der Maas et al., 2020, Appendix A, paragraph 2).

The reverse coding scheme seemed problematic to us; we conjectured that it
would not preserve the dynamics of the system. In Study 1, we extended the simulation
effort in question (Dalege, Borsboom, van Harreveld, & van der Maas, 2017) exactly as
it was conducted and thus our findings were resultant of the reverse coding scheme (see
Figure 1). Now, we will compare the recoded vs non-recoded networks to surface the
difference in dynamics. Figure 17 serves as a direct comparison to Figure 1. In the
former, reverse coding was not used; in the latter, it was. The principal points of
comparison are when the nodes "Angry" and "Afraid" were perturbed. In the recoded
system, these were very similar to all other perturbations. In the non-recoded system,
these were markedly different.  Thus, our conjecture stands.

Reverse coding, in this case, generated a network with nearly all weights w;;
positive. We surmise that this feature of the network is the basis for the observed
differences in dynamics between the recoded and non-recoded networks. An open
question for future CANAE work in this vein is whether recoding, with realistic survey
data, will generate similar distributions of weights. It likely will. Reverse coding will,
typically, target negative correlations precisely because in an attitudinal survey
instrument most negative correlations will arise from complementary valenced items; in
other words, the correlations are dictated, to a large degree, by what has been described
as a positive manifold of attitudinal items (Dalege et al., 2016).

Formal Predictions in Attitude Networks

Study 1 and Study 2 leaned heavily on simulation methods, a fruitful avenue
towards understanding a system and its dynamics. But, when relying on simulation
alone to understand a system, one runs the risk that insights obtained through example
simulations are non-generic. We now turn the discussion to the value of formal
mathematical analysis of attitudinal systems and their dynamics, something that
applies generally to psychological networks. Formal analytical methods have the

estimation of Ising-like models from binary data (see van Borkulo et al., 2015).
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potential to not only increase understanding but also to generate unambiguous
experimental predictions. We do this by example using a prominent computational
model of attitudes, the Attitudes as Constraint Satisfaction (ACS) model (Monroe &
Read, 2008). In outline form, we will provide: (i) the requisite technical details of
Graph Dynamical Systems (the mathematical framework we use), (ii) a high-level
summary review of the ACS model and its gaps in terms of making precise testable
predictions, (iii) a sketch of how we propose to move from mathematical analysis to
useful experimental predictions using the ACS model (Monroe & Read, 2008).

Graph Dynamical Systems. Although Graph Dynamical Systems (GDS)
appears outside of the psychological context, it is well suited for understanding attitude
dynamics; GDS was developed in the context of socio-technical systems writ large, but
was meant as a general abstraction for modeling and analyzing the discrete dynamics of
networked systems.

The mathematical and computational theory of GDS (see, e.g., Goles and
Martinez (1990); H. S. Mortveit (2023); H. S. Mortveit and Reidys (2001, 2007);
Rosenkrantz, Marathe, Hunt III, Ravi, and Stearns (2015)) is largely concerned with
finite state sets such as {0, 1} and specific update mechanisms used to assemble local
dynamics on agents?® into global dynamics of the complete system. Formally, a
sequence of vertex functions (f;); indexed by the agents will, by applying an update
scheme U, assemble to a map Fy: K™ — K™ where K is the state set of each agent.
For example, for a parallel update scheme with n agents/vertices, we have

Fy(z = (z1,....20)) = (A@),. .., ful@)) , (1)

where the function f; captures the behavior of vertex ¢. The variables which the
functions f; consumes capture the dependencies among the corresponding agents; we
encode these through the dependency graph G. In terms of the present article,
contemporary computational models of attitudes—e.q., Hopfield models, Ising-like models,
fully recurrent neural networks—are special cases of GDS.

Existing mathematical and computational theory of GDS deals with how
structural properties of the functions f,, properties of the network GG, and the choice of
update mechanism translate into properties of the system, captured through the state
space dynamics. All standard questions and topics from dynamical system theory such
as stability and control are studied. For example, it is well known that binary threshold
GDS under sequential update mechanisms (see, e.g., Goles and Olivos (1980);

H. S. Mortveit and Reidys (2007)) have only fixed points as attractors and these are
invariant with respect to the choice of update sequence (H. S. Mortveit & Reidys,
2007), while the parallel update method, it turns out that periodic orbits of length 2
can also manifest (Goles & Martinez, 1990).

The examples we provide below mark a way of using GDS to build a rigorous
foundation of attitudinal networks. Our focus will address the Attitudes as Constraint
Satisfaction Monroe and Read (2008) model. The general form of this models is
captured completely in the GDS formalism:

o There is a graph G = G(V, E) consisting of a collection of beliefs (vertices from a
set V') and relations between them (weighted edges from a set E). (Social

23 Agents map onto vertices or nodes of a graph.
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psychologists will be familiar with nodes and weights (vertices and relations) in an
artificial neural network.)

o Each vertex i € V is assigned a dynamic state z; € K; where K, is the state set
for that vertex. Generally, we have K; = [a;,b;] C R where a; and b; are bounds
on the vertex state values.

o The system state is z = (z1, X2, ..., Z,).

« The edges, which are directed, are defined by a real-valued matrix W = [w;;]. An
edge e from vertex i to vertex j is written e = (7, j) and has associated edge

« For each vertex ¢ € V there is a function o;: [[}; K; — R performing a local
computation for vertex ¢ that captures both vertex biases and some form of
coupling with other vertices through the the matrix W, e.g., 05(z) = X,; wi;;.

« Finally, for each vertex ¢ there is a vertex function of the form f; = ¢; o o; where
¢;: R — R is for instance a threshold function, like Heaviside.

o These kinds of models are typically explored through discrete-time, asynchronous
simulations where, for each time step, one selects a vertex ¢ and evaluates f;, and
instantiates a state change only for vertex i.

Attitudes as Constraint Satisfaction. The ACS model was developed to
demonstrate, as proof-of-concept, that dynamic network models could capture some of
the key empirical patterns in attitude research via simulation; no mathematical analysis
was provided. This model was not designed to capture real human attitudinal contexts
or to capture a specific set of experimental data. Instead, the ACS leveraged a high
degree of abstraction and a low degree of specificity to offer a proof-of-concept model,
one that would spur future development.

The primary measure of the ACS model (Monroe & Read, 2008) was the
dynamics of a single vertex, called the evaluative vertex (z.) that served as the
evaluation of the attitude object. The graph was partitioned into two competitive
substructures—one to represent knowledge related to the attitude object (e.g., the
presidential candidate is kind and intelligent) and the other to capture persuasive
attempts against the existing knowledge. A typical simulation trained the model to
gravitate toward a positive evaluation of the attitude object, i.e., a positive value of x..
After training, the model was probed and perturbed to test the effects, theoretically, of
specific kinds of persuasion, reasoning (e.g., motivated reasoning), mere thought on
polarization, and elaboration likelihood. Other measures were used to provide some
rudimentary understanding of the operation of the system (e.g., the energy of the
system as coherence; the average states of the vertices in different partitions).

Across a series of simulation experiments, a set of experimental factors captured
aspects of the system that mapped onto real-world conditions of interest and features of
variability in the structure of the system, e.g., size of knowledge structure (number of
beliefs associated with the attitude object), relations of partitions (degree of
competition between persuasion and knowledge), strength of the persuasion attempt
(number of persuasion vertices), and finally, a form of processing capacity limitation.

The objective of the ACS model was to demonstrate that certain configurations of
initial conditions (e.g., the distribution of weights in W), learning (which typically
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fortified the initial conditions), and parametric configurations of the factors (e.g., size of
the network, structural changes, capacity) could, in principle, mimic the coarse-grained
features of key experimental phenomena.

To summarize, the set of ACS simulations were, by design, highly-idiosyncratic,
post-hoc instantiations of highly-stylized constructions. Rigorous methods were not
employed, nor have they been since, that would characterize this model in a systematic
way. Also by design, the proof-of-concept simulations did not yield quantitative
predictions that were amenable to experimental test.

From Mathematical Analysis to Experimental Predictions. In this
section we will (i) provide the formal description of the specific GDS form we aim to use
for the proposed demonstration, (ii) define precisely the ACS model as a GDS, (iii)
provide a stylized, textbook-like example of an experimental prediction from a simple
formulation of the ACS, (iv) demonstrate, by example, how we envision the formulation
of theoretically important experimental predictions in the future.

A GDS we would consider for the ACS would be a weighted, block sequential graph
dynamical system over a set V = {1,2,...,n} that is constructed from a sequence of
vertex functions F' = (f;)?_, and a map U that for each time step ¢ > 0 assigns a subset
U(t) C V whose states are to be updated at that time. Given some initial system state
x(0), the dynamics of the system state x(t) = (z1(t), z2(t), ..., z,(t)) is given by:

w(t),  ifigUQ®)

fi(z(), ifieU) 2)

zi(t+1):= {

The dependency graph G associated to F' has vertex set V' and edges all (7, j) for which
f; depends non-trivially on z;. The graph G captures the possible interactions among
vertices. We associate to F' the matrix W = [w;;] € M, (R) of edge weights; here it is
assumed that w;; # 0 if and and only if (7, j) is an edge in G.

Definition 1 We set V = {1,2,...,n} and specify the following:

o An object vertex v =1 with state 1 € {0, 1}, capturing the absence/presence of an
object to be evaluated, and an evaluation vertex v = n with x, € [—1,1] C R. Here
x, <0 (resp. x, > 0) models a negative (resp. positive) attitude toward the object,
with |x,| representing the strength or degree of polarization towards the object.

o A partition of the remaining vertices {2,3,...,n — 1} into non-empty subsets C
and P. The set C' is called the cognitive partition and represents features,
concepts or interior beliefs held about the object, while P, the persuasion partition,
represents exterior persuasive influences regarding the object.

o Parallel update: for all time steps t > 0 we have U(t) = V.

o Vertex functions: let e; denote the unit vector (1,0,---,0), W; the i row of W,
and (x,x') the inner product of vectors x and x'. The vertex functions are defined

by

fi(z) = (e1,x) , ficien(x) = 1/(67<W“:’3> +1), and, f,(z)= (e<W”’””> — 1)/(6<W”’m> +1).

o Stopping criterion: for 8 € R the 0-stopping time t* is the smallest time step such
that the norm ||x(t* + 1) — z(tx)|| < 6.
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Next we provide an example of predictions for a hypothetical experiment. We
focus on what parameter regimes and weight ranges may give rise to successful or
unsuccessful persuasion attempts. Although simple, this provides key elements of what
we envision would apply to more advanced models addressed in the psychological
literature.

We use a system with four vertices V' = {o, p, ¢, e}, where o is the object, e the
evaluation, c¢ is for cognition, and p is for persuasion. The weight matrix W has four
non-zero entries given by w,. = a, wee = &', w,e = 7, and w,. = § as shown on the left
in Figure 18.  The states z, = 1 and z. = 1 represent the presence of the object and
cognitive engagement with the object, while x. > 0 represents a positive attitude
towards the object. The o parameter represents active attention towards the object
while § represents a competitive coupling to an exterior persuasive influence represented
by the state x, = 1. This attention competition is modeled by tuning the value of the
parameter 0 from 0 to 1. Finally, o represents the cognitive contribution to the attitude
value of e while v > 0 represents a automatic associative bias towards the object. As
the d-tuning takes place, we wish to study which scenarios (parameter settings) lead to
compliance with persuasion with the persuasive influence which seeks to change the
x. > 0 (positive attitude) to z. < 0 (negative attitude).

In our case, the vertex functions of the ACS model for vertices ¢ and e are given
by f.(z) = ax, + dz,, and f.(x) = &'z, + vz, with the remaining two being constant
functions f,(x) =1 and f,(x) = 1. We note that any initial
state 2(0) = (z, = 1,2, = 1,2, = 1,2, = 1) is eventually mapped onto the fixed point

r,=1, x,=1, z.=a+6, and z.=d(a+0)+7. (3)

The boundary in parameter space separating successful and unsuccessful persuasion can
be obtained as the manifold defined by equating z. in Equation (3) to 0, that is,

v = —d'(a+0). Here is the key insight: the expression for x. allows one to (a) identify
which parameters to target in an experiment, and to (b) quantify the magnitude of
adjustments to the chosen parameter(s) in order to obtain a specific outcome. With a
model having many parameters, one may want to restrict this space by introducing
relations among them. In this example, we relate o and § through the function f as

o = f(—d?%). If we control z. to be 1 (via a +v = 1) , we can derive v = §° to
understand the relation between the degree of persuasion and the degree of automatic
associative bias. Figure 19 illustrates an experimental predictions in terms of when a
persuasion attempt would be successful or not. In practice, one would relate parameters
and possible constraints to experimental mechanisms and controls.

It is important to revisit the purpose of this exercise, a simple, textbook-like
example of the process from mathematical formulation to experimental prediction in
attitudinal networks. It was not to show the nature of the kinds of predictions we
envision for future work (we discuss this below) but to show what we mean by making
precise empirical predictions on dynamic networks.

Next we provide a sketch of what formal methods might look like in a more
realistic setting using the ACS model. We focus on a question of direct interest to
attitudes. This question has two parts and can be broadly categorized as having
directly to do with the act of persuasion: What is the ratio of persuasion elements to
cognitive elements for a successful persuasion, and is this ratio an invariant with respect
to any characteristics of the act of persuasion?
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To formalize this (using some reassignment of parameters in comparison to the
above example), we let M = (W, F,U) be the GDS formulation of the ACS model
previously described. The ratio of interest, call it (), then naturally maps in our
formulation to

_ lCl
Q(M) * |P| ‘
We can control for the size of the total system, which means fixing n = dim(WW'). We let
|P| := a(n — 2) where a € [0, 1] represents the fraction of nodes in the system that are
persuasive. We label M, := (W («), F(«),U(a)) to denote this interpretation. Since
|C| 4 |P| = n — 2 we have in terms of «
n—2 n—2 11—«

QO T  ay  T a

Thus, for a system of fixed size n, any x(0) € R" initial state now has an interpretation
of an a-fraction of its coordinates belonging to persuasive elements. We denote

x(t!) := M,[z(0)] the state of the system M, at its f-stopping time ¢*, for the fixed
initial condition x(0). We can then propose to study variational statements of the form

la—d| <€, = |z, () —z,(t5)] <9,
or more generally ,
o —a| <€, = [Ja(ty) —z(t)]] <6,

where || - || denotes suitably chosen matrix/vector norms, and 0 € R represent the errors
in evaluation and in terminal system state respectively, both taken under
a-perturbations controlled by € € R.

The implications formulated above have natural interpretations which will be of
interest. For instance, a parameter pair (¢, 0) satisfying the first implication says that a
variation of at most € from the current persuasive strength o, would guarantee a change
of no more than ¢ in the attitude the system exhibits under the constant initial
circumstances of z(0). Namely, all things being equal, we can relax/increase our
persuasion by no more than € and expect a drift of no more than § in attitude.

We formulate the question in this manner as it conveniently allows us to see the
problem in terms of a continuous parameter o (a proxy for the proportion of persuasive
nodes). Using this formulation this naturally becomes a question about the continuity
of the dynamics of the system when « varies. For instance for a fixed «, if the collection
of vertex local functions is interpreted as a phase space function that is iterated under
block sequential update, and the local vertex functions happen to be such that F' is
contractive, then this becomes an iterated function system. Then, by Hutchinson (1981)
we know a unique fixed set exists for such a system which is now a-parametrized. The
"volumes" of these sets then bound the attitude changes possible for any initial
condition state chosen from such a set, and this bound can change as « is varied.

This more realistic example provides a sketch of one way to expand formal
methods to more realistic psychological networks. The key takeaway point is that, by
example, persuasion attempts may be modeled by the ratio of cognitive vertices to
persuasion vertices. Using this formulation, we could consider variational methods to
make experimental predictions about the degree of change in the attitude network given
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a specific degree of persuasion.
Using variational and other formal methods, it may be feasible to develop very
nuanced hypotheses related to a broad set of research questions per the ACS:

o Is it possible to identify vertices that would be more effective for persuasion
attempts. For example, assume we are limited to only perturbing 10% of the
persuasion vertices, under what conditions should we (should we not) target
specific vertices. Assuming such conditions do exist, what defines the
heterogeneity in effectiveness across vertices (e.g., centrality of vertices)?

o Assume some vertices of the cognition partition are not measured. How does this
affect our understanding of persuasion and learning?

o Assume that the set of vertices that are measured includes both relevant and
irrelevant vertices in the cognition partition. How does this affect our
understanding of persuasion and learning? Can we model the irrelevant vertices as
noise?

o What is the effect of precision in estimation of edge values on the dynamics of the
system? Are binary values sufficient, especially as networks get bigger? Or do we
need more precise/granular measurement? What level of precision do we need?

« How do we represent/capture learning in the model? Change in vertex strength?
Change in edge strength?

o Can we identify points of potential maximal change or vulnerability using the
wide range of network characteristics that have been developed. How would
changes in those characteristics influence dynamics?

In summary, we described a mathematical approach to understanding dynamics
on graphs, graph dynamical systems, that hitherto has never been applied to attitude
networks or psychological networks. We provided two examples in an effort to illustrate
the value of this approach for both understanding attitudinal systems but also for
making precise predictions. We surmise that such an approach might help to address
the dynamics issue outlined in recent work in clinical psychology (see Bringmann, 2021;
Bringmann et al., 2019; Bringmann & Eronen, 2018; Burger et al., 2020; A. O. Cramer
et al., 2016; Haslbeck et al., 2021; Wichers et al., 2015). In short, formal methods for
dynamical systems on graphs are mature and apt for the problem of attitude modeling
and, more generally, the problem of dynamics on psychological networks.

Conclusions

We conclude with the assertion that the two claims of CANAE addressed in this
article were not supported. The effects of perturbing an evaluative reaction was
demonstrated to not be a function of its network centrality (Study 1). The hypothesis
that a small-world network structure offers a trade-off between attitudinal consistency
and accuracy was not the right characterization (Study 2); the trade-off is between
consistency and capacity of the system. The small-world does provide a trade-off, but
at the expense of very limited capacity of the system. The results of Study 2 spurred us
to dig deep into the evolution of CANAE, looking for hints of the purpose of such a
limited capacity system in terms of attitudes. We found that there are two distinct
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forms of CANAE; one is a content-addressable associative memory system, as described
in the introduction and the second is a network variant of the cusp catastrophe model.
The differences in these two forms are significant enough to warrant divergent future
research directions.

Our assertion is qualified by the fact that our work was based on simulation work
that was not supported by formal methods. We offer in the General Discussion a
glimpse of what we mean in terms of formal methods both towards deeper
understanding of psychological network dynamics and for making more rigorous
theoretical predictions of such.

Author Note

The work in this study was funded by NSF Grant Nos.: 1520359, 2002626 and
2200112. All simulation and analysis code (and instructions for generation of the
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reproduction of the environment. This study’s design and its analysis were not
pre-registered.
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Prop. Impossible Mean Energy Network Properties
Ones  Random  Zeros Ones Random Zeros No. Flip  Prop.
Nodes Edges Neg.
A 1.00 1.00 1.00 -23.14 -22.73 -23.97 0 0.00
B 1.00 1.00 1.00 -15.41 -14.96 -15.97 0 0.17
C 0.46 0.13 0.16 -07.72 -07.68 -07.99 2 0.34
D 0.04 0.00 0.00 -05.49 -05.61 -05.99 6 0.50
Table 1

Results of the Pseudo-Necker Cube Simulations.
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Figure 1. Distributions of sum scores over 1000 runs of an Ising simulation (per
condition). The top-left panel depicts the baseline, no perturbation condition; the
remaining panels illustrate the effects of perturbation for each vertex separately. Panel
labels (bold, top-center) capture the central construct meaning associated with each
vertex. The top number within each panel is the Wasserstein distance of the
distribution in comparison to the baseline distribution; the bottom number is the mean
sum score of the distribution.
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Figure 2. Relationship between vertex centrality and extent of effect. The x-axes
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Borsboom, van Harreveld, and van der Maas (2017)); the y-axis represents extent of
effect (as either Wasserstein distance or mean of the sum scores). The cross points
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Figure 3. The 15 point-attractors of the 1984 Reagan CANAE attitude network. The

x-axis shows each ordered index of the state vector. The y-axis identifies the
fixed-points by their decimal value; the order from top to bottom is by increasing
frequency. States 15, 17, 19, 21 represent the negative valence nodes.
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attractor) of each point-attractor. The most frequent point-attractor had a frequency of
2,148,643; in other words, about half of the 2% initial states were attracted to this
point-attractor.
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Figure 7. Frequency distributions of Set 2 simulations
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Figure 17. Distributions of sum scores over 1000 runs of an Ising simulation (per
condition). The top-left panel depicts the baseline, no perturbation condition; the
remaining panels illustrate the effects of perturbation for each vertex separately. Panel
labels (bold, top-center) capture the central construct meaning associated with each
vertex. The top number within each panel is the Wasserstein distance of the
distribution in comparison to the baseline distribution; the bottom number is the mean
sum score of the distribution. The underlying model serves as a comparison to Figure 1
in which reverse coding was used (see text for details).
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network for state (z, = 1,2, = 1, 2., x.) and assessing whether parameter choices cause
compliant or non-compliant behaviors with the persuasion attempt (z. < 0 or z. > 0).
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Figure 19. A simple, textbook-like example of experimental predictions via
mathematical analysis for the Attitudes as Constraint Satisfaction (ACS) model
(Monroe & Read, 2008). We have introduce the two parameter relation o/ = f — §% and
assert that a4+ 0 = 1. Under this particular choice, we obtain the boundary curve

v = 6% separating the non persuadable (light; z. < 0)) and the persuadable regions
(dark gray; z. > 0) as a function of manipulations of persuasive influence delta and
automatic associative bias gamma. See text for details.
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Appendix
Procedure for Computing dists and s
(textitNote: In this appendix, we denote individual nodes in a network by j; in the
manuscript this is not necessarily the case.)

The goal of this appendix is to elucidate the computation of the extent of the effect
perturbing a single node has on the dynamics of the system. To this end, we consider
our unperturbed system of 22 nodes described in Study 1. This system exhibits a set of
15 referent fixed points denoted here as a collection of 22-dimensional, 0, 1-vectors,

FR={fre{0,1}*|i=1,--- ,15}.

Associated to each reference fixed point fI is v(f) > 0, its absolute frequency of
appearance among the 2?2 simulations conducted in Study 1 - one for each initial
condition possible.

Now, for each node j of the system, we run 2*? simulations (one for each of the
possible initial conditions), with the caveat that throughout each run, the value of node
j is kept at value 1 until the system relaxes to a fixed point. We record the obtained
(node specific) fixed points f; € FJ, and their absolute frequencies of appearance v(f).
For each such fixed point we compute a Hamming distance vector

ol = (H(f], fD), H(f3, £, H(fis f)-

We denote by 77 := {k|H(f!, f}) = minv]} the set of indices where the minimum
Hamming distance is achieved.

Next, we create a matrix M7 = [m,g], where o € {1,--- ,|F¥|} and
66{177’FJ‘}7W1th )
v(f3) j
J A |‘rj| & € T/B
mang = B )
0 ,a & T
We construct the normalized vector
SRS S, ) VE) p—— P}
Zk;”(flg) B Zk”(f/g) B

and similarly, from the reference points’ absolute frequencies, we construct the

normalized vector ]
ri= m[”(fa)]'

Finally, the extent of effect of perturbing node j is then defined as

Ej = H’T’ — SjHQ.



